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Abstract

The hedonic pricing method is one of the main approaches used to estimate the eco-
nomic value of attributes that affect the market price of an asset. This method is
routinely used in environmental economics to derive the economic valuation of environ-
mental attributes such as air pollution and water quality. For example, the “Ricardian
approach” is based on a hedonic regression of land values on historical climate vari-
ables. Forecasts of future climate can then be employed to estimate the future costs
of climate change. We show that this approach is only valid if current land markets
ignore climate forecasts. While this assumption was defensible decades ago (when this
literature first emerged), it is reasonable to hypothesize that information on climate
change is so pervasive today that markets may already price in expectations of future
climate change. Indeed, we show empirically that agricultural land markets in the
United States now capitalize expectations about future climate change. We derive a
straightforward empirical correction to the standard Ricardian approach (called the
“Forward-Looking Ricardian Approach”) that can be implemented with readily avail-
able data. Accounting for market beliefs decreases the estimated magnitude of climate
change damages by 50% to 62%.

JEL: Q51, Q54, Q12, Q15.

Keywords: climate change; climate change and agriculture; agricultural land prices; Ricar-
dian analysis; expectations; climate change forecasts
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1 Introduction

One of the greatest contributions of applied econometrics has been to provide empirical meth-
ods for estimating the economic consequences of anticipated future changes. The canonical
application centers around the estimation of cross-sectional hedonic regressions using market
outcome data to estimate the response of asset prices to exogenous variation in a variable of
interest and that is expected to change in the future (due to change in policy, regulations, or
other factors).1 With the estimated relationship in hand, it is straightforward to predict the
costs or benefits associated with expected future changes in any variable of interest, i.e. to
project the expected change in the state variable on the empirically estimated price gradient.
This broad approach has been used in prominent papers to value potential future regulatory
changes to the Clean Air Act (Chay and Greenstone 2005), policies that are expected to
reduce crime rates (Linden and Rockoff 2008), and policies that are expected to improve
local school quality (Black 1999), among numerous others.

One branch of this literature that has had a tremendous policy impact focuses on the
economic consequences of climate change. In that context, the method is known as the
Ricardian approach, following the seminal paper of Mendelsohn, Nordhaus, and Shaw (1994)
(hereafter MNS). The key empirical component of the Ricardian approach is a cross-sectional
regression of land values on historical climate conditions and other relevant variables to
estimate how the value of an asset (a parcel of land) is affected by climate.2 The analyst
then uses the estimated climate-price gradient along with scientific predictions of future
changes in temperature and precipitation (and possibly other climate variables) to estimate
the economic impact of climate change.

These hedonic analyses contain an important implicit assumption that economic assets
do not already capitalize the future change that is now anticipated by the researcher. In the
climate change example, this amounts to assuming that current land markets fail to account
for climate change forecasts. While this was quite plausible for land market data in the
1980s and 1990s, it is reasonable to wonder whether that is still the case today.

1. Most empirical applications build on the seminal work of Rosen (1974) and derive estimates of household
willingness to pay for an array non-market amenities.

2. The Ricardian regression specification typically includes historical average precipitation and historical
average temperature. For illustrative power, our theoretical exposition focuses on a single climate variable:
average temperature. The critique we present in this paper applies to other climate variables that enter the
land pricing equation, such as precipitation, and are accounted for in our empirical work. Deschênes and
Greenstone (2007) and Massetti and Mendelsohn (2011) have extended the cross-sectional Ricardian method
to the panel data framework.
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If land markets already capitalize available information on climate change, the standard
Ricardian approach may be severely biased. When a valuation method relies on asset mar-
kets, it must consider the fact that current asset prices rationally account for expected future
changes in all relevant variables that determine its value (e.g., the state variables). As we
show, ignoring the forward-looking nature of asset markets leads to a misspecified empirical
regression model, biased estimates of the price gradients for the relevant state variables, and
ultimately biased predictions regarding the economic effects of the anticipated future changes
in the state variables. We illustrate these issues in the context of the Ricardian approach and
argue that future applications of the method must be modified to account for the simple,
yet powerful, fact that asset markets capitalize information. Put simply, because climate
information is so pervasive, current land prices should reflect expected future climate, not
just the currently observed climate.

Our review of the literature indicates that existing theoretical presentations and empirical
implementations of the Ricardian approach indeed implicitly assume that the current asset
market ignores possible future change in the climate or other state variables. We label those
applications the myopic Ricardian approach. We show that this critique applies generally,
except when either (1) the market does not capitalize any expectation of future change in
climate or other determinants of land value, or (2) an unlikely technical condition wherein
the product of the correlation between current and future climate and the ratio of their
standard deviations is precisely equal to one.

This paper makes several contributions. First, we present a simple model of asset val-
uation that allows for market capitalization of information about future state variables to
show that asset values should reflect expected future changes in the state variables. When
applied to the Ricardian context of land values and climate, our model shows that observed
land values should reflect expected future climate variables. This is in sharp contrast with
current applications of the Ricardian method, which rely on regressions of land values on
observed historical climate variables.3

3. A recent search revealed that MNS has been cited in >1,300 publications on Google Scholar and has
been used to examine the effects of climate change in various contexts; none of the most cited papers
incorporate information. The Ricardian method has been used broadly to look at the agricultural effects of
climate change worldwide: in Africa (Kurukulasuriya et al. 2006; Seo and Mendelsohn 2008b), in Asia (Seo,
Mendelsohn, and Munasinghe 2005; Liu et al. 2004; Chang 2002), in South America (Seo and Mendelsohn
2008a), and in Europe (Madison 2000; Reidsma, Ewert, and Oude Lansink 2007). These, and Ricardian
studies in general, either utilize the value of agricultural production directly or as estimated from the value of
agricultural land. Our critique is most relevant when these estimates rely on land values, but apply anytime
information may play a role in asset price formation.
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Second, we derive conditions under which the bias occurs for two related misspecifications
of the pricing equation. The first misspecification retains the dynamic structure of the pricing
process. The second corresponds to the approach of much of the Ricardian literature, and
is entirely static. We describe the theoretical direction of these biases and the factors that
lead them to have a large or small magnitude. The direction and magnitude of these biases
hinge on the correlation between past and future states and on the variances of those states
(climate in our example) and can generally be positive, negative, or zero. Bias is likely to
occur anytime that climate change is expected to cause different changes in different places.

Third, we derive a flexible, straightforward correction that can be implemented with
readily available data and can accommodate a degree of uncertainty as to precisely what
information the market regards as the forecast. This approach accounts for market informa-
tion, the timing of information acquisition, the stream of revenues associated with various
state variables, and the possible divergence of information between the market and the an-
alyst. Without such a correction, the myopic Ricardian method generally leads to biased
estimates of the relationship between climate and land values, and thus biased predictions
about the future economic consequences of climate change.

Finally, we apply the proposed forward-looking Ricardian regression and find clear ev-
idence that land markets already capitalize climate forecasts. This suggests that existing
estimates of climate change impacts in the literature reflect the bias created by using the
myopic Ricardian model. This bias is economically important: accounting for current market
information about future climate change decreases estimates of climate change damages by
50% to 62%, depending on the assumption about the model of future climate trajectory. We
provide two pieces of supporting evidence. Using a new county-level data set on perceptions
over climate change from Howe et al. (2015), we find that land values are more strongly
related to future climate predictions (as opposed to past climate normals) in counties with
higher beliefs in climate change. We also show that land values in recent years follow future
climate predictions more closely than in the 1970s and 1980s.

2 The role of information in the Ricardian literature

In a competitive setting, rational agents with well-defined property rights price assets to
reflect the expected stream of rents generated from the asset. In non-commodity markets,
variation in the characteristics of an asset determines the market valuation of the asset
and thus the price at which similar assets are sold. A large literature utilizes this sort of
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variation to estimate the willingness to pay for a wide variety of non-transacted goods. In
hedonic valuation we use market data to determine the otherwise unobservable preferences
on packages of characteristics for non-transacted goods (Rosen 1974). This methodology has
been extensively used to estimate the economic value of climate and other non-transacted
amenities in land and housing markets (Albouy et al. 2016; Blomquist, Berger, and Hoehn
1988; Cragg and Kahn 1997; Roback 1982; Sinha and Cropper 2013).

The hedonic method has also been applied widely to study the effect of various climate
amenities on agricultural land prices. By estimating these effects, the monetary impact of
changes in future amenity (climate) levels can be estimated. By assuming that farmers are
profit maximizing and so adjust farming decisions in response to shifts in amenity levels, the
hedonic method recalls David Ricardo’s seminal work and is commonly referred to as the
Ricardian method. This method, first proposed in MNS, is based on a cross-sectional regres-
sion of land values on a variety of historical climate variables (such as average temperature
and precipitation) and interprets the results as the effect of these variables on agricultural
productivity. The impact of climate change is calculated by taking the linear combination
of these regression coefficients and predicted (rather than historical) future climate. MNS
concluded that a uniform 5 degree change in temperature and 8% increase in precipitation
leads to between a 4-5% loss and a 1% gain in farmland values (a loss of $6-8 billion per
year to a gain of $1-2 billion per year, based on 1982 revenue).4

The hedonic approach in this context can be sensitive to specification, potentially indi-
cating misspecification or omitted variables. Deschênes and Greenstone (2007, 2012) analyze
the question of climate change’s effect on US agriculture in a different manner, using annual
variation in temperature to identify a lower bound on the effect of climate change. They
conclude that climate change will lead to a reduction of agricultural profits of $4.5 billion
per year (in 2002 dollars) by the end of the century.

While asset markets generally capitalize the expected future levels of relevant state vari-
ables, the timing at which information about future changes is absorbed by the market is

4. Agriculture in the west of the United States is predominately irrigated, and western farmers respond in
a qualitatively different manner to climate conditions than in regions dominated by non-irrigated (dryland)
agriculture. Schlenker, Hanemann, and Fisher (2005) and Schlenker, Hanemann, and Fisher (2006) refine
MNS by restricting attention to dryland counties, as well as providing agronomically motivated functional
relationships between climate variables. They find the impact of climate change in dryland counties to be
between -$5 and -$5.3 billion per year (1982 dollars) (Schlenker, Hanemann, and Fisher 2005), and between
-$3.1 and -$7.2 billion per year using improved weather specifications (Schlenker, Hanemann, and Fisher
2006). Their analysis uses 1982 dollars – throughout the present paper we adjust inputs to 2005 dollars
using a CPI adjustment.
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critical. In the context of global climate change, the accumulation and dissemination of
evidence regarding the predicted rise in temperatures began in the 1990s. For example,
the IPCC’s First Assessment Report was published in 1990 and predicted an increase in
global mean temperature of about 0.3 Celsius per decade. Thus, land value data from the
preceding decades are unlikely to reflect future climate change. As public knowledge about
climate change advanced over the 1990s and 2000s, it is reasonable to wonder whether these
anticipated impacts are reflected in current land values.5 This is the key premise underlying
this paper.

In Ricardian studies that use the US Census of Agriculture (Mendelsohn, Nordhaus, and
Shaw 1994; Schlenker, Hanemann, and Fisher 2005, 2006; Deschênes and Greenstone 2007),
the value of agricultural land is farmers’ (self-reported) estimate of the market value of
the land. This value capitalizes information about future market conditions. The intuition
underlying this is straightforward: suppose it is well known that a parcel of farmland will
experience a large exogenous decrease in soil quality the year after a proposed sale. Its
value in a market with symmetric information would be lower than an otherwise equivalent
parcel with constant soil quality. Failure to incorporate information into the hedonic model
amounts to an implicit assumption that market participants use only historic information
to predict the future value of an asset. In the Ricardian literature, this is akin to assuming
that farmers (or any participant in land markets) ignore predictions about future climate;
this seems inconsistent with other assumptions in the Ricardian model that farmers are
sophisticated profit maximizers.

The economics literature has consistently shown that agents adjust their behavior based
on environmental forecasts; recent examples include Rosenzweig and Udry (2013) and Shrader
(2017). A recent empirical literature has begun to address and model the role of expecta-
tions related to environmental risks, generally by finding proxies for the probability that
some uncertain (binary) event will occur. These proxies serve to approximate consumer or
market perception of risk. Meng (2017) uses prediction market prices to capture market
beliefs relating to the risk of climate regulation in order estimate the cost to firms of climate
change legislation. Gallagher (2014) models learning about uncertain, infrequent flooding
events in the United States. Davis (2004) finds the marginal willingness to pay to avoid

5. The initial application of the Ricardian approach (MNS) was based on land market data from 1978
and 1982. As a result, the results in MNS are most likely immune to the critique presented in this paper.
However, the continued application of the myopic Ricardian method to market data from the 2000s and
2010s may no longer be appropriate if markets capitalize expectations about changing future climates, as
our empirical results will suggest.
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the risk of pediatric leukemia using hedonic techniques. Deryugina (2013) finds that survey
respondents update beliefs about climate change in a rational manner. The notion that land
markets capitalize expected rents regarding land development, subsidies, and irrigation is
recognized in related literature.6

Our reading of the literature indicates that expectations over future climate have not
been incorporated when estimating the economic impacts of climate change.7 Our paper
extends and complements the new focus on the effects of information and future market
forecasts into applied economic analysis by incorporating climate forecasts into the analysis
of agricultural land prices. In doing so, we offer a straightforward correction that can be
implemented with readily available data and use it to test whether or land markets do indeed
reflect future information.

3 Asset prices and information

We develop a simple model of an asset price (P ) based on the stream of rents it generates (p)
when forecasts of the future state variables are available to the market. By state, we refer
to potentially time-varying characteristics of an asset that contribute to price formation. In
our motivating application, the state variable is climate. Climate has a strong agronomic
connection to the agricultural profits that can be produced on a given parcel of land. Similar
parcels of land under different climate regimes produce different rents, and thus have different
prices.

We treat land as an asset that is rented to firms in order to produce globally traded
commodities. A firm can produce any of K products on a parcel of land at any time t. Use
k generates gross revenue vkt(x, `,St) that depends on inputs x, land characteristics `, and
the state variable St; the cost of using input vector x is captured by ct(x). For any use k,

6. In particular, the option to develop land for non-agricultural use greatly influences agricultural land
values. Plantinga, Lubowski, and Stavins (2002) estimate that 80% of agricultural land values near urban
areas are attributable to development potential. Irrigation, and expectations related to water withdrawals
therefrom, impact land prices in the relatively dry region above the Ogallala aquifer (Hornbeck and Keskin
2014). The role of expectations in the valuation of residential amenities is an active area of research; see, for
example Bajari et al. (2012), Bishop and Murphy (2011), and Bishop (2015).

7. Schlenker, Hanemann, and Fisher (2006) compare coefficients on the hedonic model from 1982 and 1997
to conclude that farmer expectations had not changed over that period. We view this as a weak test and
note that that public knowledge of climate change has increased dramatically in recent decades as scientific
forecasting of impacts has become more sophisticated and widely disseminated.
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firms select inputs to maximize net revenue:

rkt(S; `) = max
x

vkt(x, `,St)− ct(x)

The subscripted t captures the fact that factors influencing revenue and costs (i.e., prices)
may be time varying. Perfect competition among producers implies zero profits for firms on
any parcel of land and ensures that firms choose the use of land that maximizes net revenue.8

The zero profit condition pins down the rental rate, p, of the parcel (suppressing the fixed
land characteristics so that rkt(S; `) = rkt(S)):

max
k
{r1t(St), . . . , rKt(St)} − pt(St) = 0

where we have implicitly assumed that there are zero adjustment costs between uses. While
this may be a strong assumption for sectors with high levels of fixed capital, in agriculture
many non-land inputs are variable and change year to year (e.g., seed, water, fertilizer), and
many capital inputs are mobile (e.g., combines). Kelly, Kolstad, and Mitchell (2005) find
that adjustment costs in the US Midwest for agricultural in response to climate change are
small, well under 1% of the asset value of land. Burke and Emerick (2016) identify little
adjustment in agricultural practices to changing climate, either because there are limited
options for adjustment or because adjustments costs are too high to be profitably employed.
Excluding adjustment costs allows us to collapse dynamic pricing concerns into simple, net
present value indices for future climate.9

Land is bought and sold in a competitive market, and it is assumed there are no arbitrage
opportunities. Thus the price P of the parcel is the present discounted value of future rents
and depends on the evolution of the state variable. Given a deterministic future sequence of
states {S0,S1, . . . }, the asset price is

P (S0,S1, . . . ) =
∞∑

t=0
pt(St)δt (1)

where δ = 1/(1 + r) ∈ [0, 1) is the discount factor, and r > 0 is the rate. Thus, the price
of land is simply a function of the stream of rents associated with land rental. Equation (1)

8. In this framework, incumbent landowners are the residual claimants of the economy and the value of
their assets could be used to calculate welfare in a general equilibrium analysis.

9. Several papers examine adjustment costs in the context of residential relocation: Bayer et al. (2016),
Bishop and Murphy (2011), Bishop (2015), and Kennan and Walker (2011).
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is a discrete time version of the classic capitalization model of Ricardo (1817) treating land
as a fixed factor of production (Nickerson and Zhang 2014). Rearranging the zero profit
condition reveals that the rental rate p is equal to the envelope of land uses.

Much recent work on the climate and agriculture has focused on finding the best func-
tional form to model the relationship between climate and either agricultural production or
prices. Three are of particular importance: a quadratic relationship (as in MNS), a binned
relationship (Deschênes and Greenstone 2007), and a semi-parametric piecewise relationship
(Schlenker and Roberts 2009). To highlight the role of information, we abstract from these
approaches in this section and assume that the rental rate can be represented by a linear
approximation of the state variable:

pt(St) ≈ a+ bSt

where b = ∂p/∂S is the instantaneous change in rental rates due to shifts in the state
variable, and a captures the value of fixed determinants of p. In the empirical portion of
the paper, we use a nonlinear, piecewise response function, and also report results that use
both binned and quadratic specifications in the Appendix. For simplicity, we model p as a
constant function up to the state variables.10 For a deterministic path of future states, the
price of the asset at time t = 0 is approximated by the present discounted value of the linear
approximation of future rents:

P (S0,S1, . . . ) ≈
∞∑

t=0
(a+ bSt)δt (2)

Note that in the case of a constant state S0, the price of the asset is simply P = aD+ bDS0

where D ≡ ∑∞t=0 δ
t = 1/(1− δ) = (1 + r)/r.

Now consider two different scenarios, one in which the future states are constant (St = S0

∀t) and the other in which the future state evolves (S0,S1, . . . ). These scenarios motivate two
different models to represent land prices. As we show, both models differ from the standard
Ricardian method. It will be convenient to define a simple index, the infinite stream of states

10. Relaxing this assumption would require general equilibrium analysis of the changes in crop prices and
the prices of inputs, which we consider beyond the scope of this paper.

9



associated with each of the two scenarios.11 Let

I ≡
∞∑

t=0
S0δ

t (i.e., the No Change index) (3)

Y ≡
∞∑

t=0
Stδ

t (i.e., the Mean Forecast index) (4)

Each of these indices captures, in a single variable, the present value magnitude of a forecast
about the future state. The No Change and Mean Forecast indices can be used to construct
two different asset prices:

P (I) ≈ aD + bI (the No Change asset price) (5)

P (Y ) ≈ aD + bY (the Mean Forecast asset price) (6)

Note the correspondence between the prices associated with each scenario: P (Y ) = P (I)−b ·
(I−Y ). The difference (I−Y ) captures deviations of expectations about the future from the
current state. If markets do capitalize expectations, observed asset price data corresponds to
P (Y ). In that case, the No Change asset price P (I) is unobserved. However, market beliefs
about the future state, which we define as the Mean Forecast index, are also unobserved.
As a result, the dependent variable in Equation (6) is often regressed on the independent
variable in Equation (5). We explain how this interchange can bias empirical estimates of b
and propose a feasible solution.

The Ricardian approach in context

When markets capitalize expectations, observed asset price data correspond to P (Y ), and
P (I) is unobserved. As a result, interchanging prices between Equations (5) and (6) generally
misspecifies the theoretical relationship between price and states. In contrast, the standard
Ricardian regression ignores the market expectation about the future climate by specifying
a model linking land values to observed historical climate:12

Pi(Yi) = α + βS0i + ui (7)

11. The only assumption needed to guarantee that this is feasible for δ < 1 is that the states are finite.
12. The dependent variable in this analysis is the price of land per acre, as in MNS. Many other analyses

use the natural logarithm of price per acre. We use a levels specification to match MNS and maintain fidelity
to the theoretical model; estimates using log price are similar to those reported in our empirical analysis.
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The standard Ricardian regression assumes that the state is constant and reports coefficients
β that describe the marginal effect of the state on net present value of rents. The difference
between this coefficient and b (the marginal effect of the state on single period rents) warrants
additional caution when predicting the impacts of change in a state: impacts should either
be expressed in annual terms or in net present value. This scaling issue can be trivially
addressed. We next show how misspecification by replacing Yi by Ii (or S0i) leads to biased
estimates of b.

3.1 Standard Ricardian parameters estimates are biased when
markets capitalize expectations about future climate change

As the previous section shows, the standard Ricardian approach misspecifies the theoretically
correct land value equation when markets capitalize expectations about future climate. This
results in an omitted variable bias in empirical implementations. To develop intuition about
this bias, we first derive a simple analytic expression for its magnitude and direction when the
misspecified equation utilizes the present value magnitude of a forecast (i.e., using Ii instead
of Yi to predict land values). The algebraic simplicity of this bias calculation is muddied when
considering the bias generated by estimating the traditional Ricardian regression (where the
single state S0i is substituted for present value index Ii), but the logic is the same.

Suppose that an analyst takes full account of the dynamics of asset markets (and so uses
Ii instead of S0i), but implicitly assumes that the market fails to capitalize any expectation
about future climate. In that setting, the analyst would incorrectly estimate the marginal
impact of a constant state from a regression for land prices that reflect expectations:

Pi(Yi) = α + bIi + ei (8)

The resulting parameter estimate of b is biased owing to an omitted variable problem. Denote
the OLS estimator of b in Equation (8) by b̃. It follows that:

b̃
p−→ Cov(Ii, Pi(Yi))

V (Ii)
= b

ρIY σY

σI

(9)

where ρIY is the correlation between the No Change and Mean Forecast descriptions of the
state, σI is the standard deviation of Ii, and σY is the standard deviation of Yi.13 Given a

13. Extending the bias calculation to the multivariate case is less straightforward as it involves the covari-
ances of omitted variables. The intuition is similar, however.
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sample of data on Ii and Yi the standard deviation and correlation coefficient σI , σY , and
ρIY can all be estimated. Thus the magnitude and sign of the bias in the empirical estimate
of b reflects the joint distribution of the forecasts Ii and Yi. This leads to the following
observation:

Result 1. The incorrect specification of the land value equation that ignores expectations
results in a consistent estimate of b (b̃ p−→ b) if and only if ρIY σY /σI = 1 or b = 0. In
general, the relative bias is equal to ρIY σY /σI .

This formula for bias deserves a few notes. First, there is one special case where
ρIY σY /σI = 1 by necessity. When the Mean Forecast description of the state of the world
is simply the No Change description plus a constant additive term, ρIY = 1 and σI = σY ,
so relative bias is equal to one and b is identified by a regression of Pi(Yi) on Ii. Second,
most climate change forecasts do not predict a ‘reversal of fortunes’: warmer locales will
likely become warmer than cooler locales, implying that 0 < ρIY < 1. Thus, if the ratio of
standard deviations σY /σI is less than one, the bias in the standard Ricardian regression
will lead to an understatement of the climate change effects. In particular, if current and
predicted climate are not very correlated (as |ρIY | approaches 0), current climate is a poor
proxy for predicted climate and b̃ is attenuated.14 At the same time, it is possible that the
method overstates damages if σY /σI >> 1, as would be the case if cross-sectional variation
in predicted climate were much larger than in current climate.

The Mean Forecast index is unobserved by the analyst. We therefore make a flexible
assumption about the nature of the Mean Forecast index in terms of observable data, and
derive the bias under this assumption. We utilize this assumption in the empirical exercise,
and show that it can be used to predict the degree to which the market is already pricing
in expectations about climate change. Suppose that beliefs about the path of future climate
(the Mean Forecast) can be represented by a mixture between historical climate (the No
Change index, Ii) and an Observed Forecast. This forecast could be extracted from a climate
model. Denote the Observed Forecast by Fi ≡

∑∞
t=0 SForecast

it δt. Formally, the assumption
that market beliefs are a mixture of historical climate and an observed climate forecast
corresponds to the following:

Yi = ωIi + (1− ω)Fi (10)

where ω is the weight the market places on the historical, No Change, state. Under this
assumption, if the analyst proceeds to regress land prices on historical climate alone, the

14. In fact, if ρIY = 0, then b̃ = 0 regardless of b or σI , σI .
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bias in the estimate of b is:

b̃
p−→ b ·

(
ω + (1− ω)ρIFσF

σI

)
(11)

where ρIF is the correlation between No Change and Observed Forecast indices, σF is the
standard deviation of Fi, and σI is as before. This reveals that the estimate b̃ depends not
only on the true parameter b and on the statistical relationship between historical climate
and the forecast, but it also depends on the weight on the forecast given by the market.

Result 2. If market beliefs are a mixture of historical climate and an observed forecast, the
standard Ricardian approach gives a consistent estimate of b (b̃ p−→ b) if and only if (i) ω = 1
or (ii) ρIFσF/σI = 1.

We can use this result to hypothesize about the direction of this bias in simple linear
models. The correlation term is less than or equal to one in absolute value, and is positive
in our data; values vary from about 0.5 to 0.99. The ratios of standard deviations between
future climate forecasts and past climate (σSt/σS0) are generally 0.9-0.95 for growing season
mean temperature, and from 0.33 to 0.99 for precipitation. Thus, estimates of b from a
linear model that fail to account for expectation will be biased toward zero and the effect
underestimated. In the Appendix, we derive an expression for the bias under a piecewise
linear function form, and show that the intuition for when the bias occurs is similar. Due to
the nonlinearity of the piecewise linear functional form, the implications for the direction of
the bias are not as straightforward as in the linear case.

3.2 The economic cost of anticipated future change

The information contained in asset prices can be used to determine both the net present
value (NPV) impact of change in the state (e.g., change in the climate) as well as annual
impacts to rents. In many ways, the NPV impact of change is the more policy relevant
one, for example, in cost-benefit analysis. We therefore focus on the NPV impacts. While
it is straightforward to scale between the two impacts given an appropriate measure of b,
doing so requires an understanding of the market’s discount rate, δ. Furthermore, it may
be that society’s discount rate differs dramatically from that of the market, a fact which
should be accounted for in analysis that compares outcomes and investments over the long
term (Weitzman 1998). In our application, we assume that δ = 0.03 and investigate the
robustness of the results to alternative discount rates.
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Estimation of the economic costs of anticipated future change proceeds in two steps. The
information (forecasts) used in the two steps can be identical or can differ. The first step
estimates how asset prices respond to the expected path of future states; this amounts to
correctly estimating b. The second step uses a consistent estimate of b and a forecast of
future states to estimate the impact of the change predicted by the forecast. Because b

captures the price impacts of these changes and prices represent the present value of the
states, this approach gives the present value of the changes in the futures states. Given a
consistent estimate of b, the impact of any path of state changes can then be predicted.

Predictions of the costs of future changes are made relative to some counterfactual. A
relevant counterfactual compares outcomes under some forecast with outcomes had there
been no change at all. In the climate change example, this is akin to comparing the prices
of land under a change in climate with the prices of the same land if climate was to remain
constant. This counterfactual is found simply by estimating the unobserved prices associated
with the No Change scenario, Pi(Ii). Given data across observations on the current state S0i,
the path of future states {Sti}∀t, and prices Pi(Yi), it is straightforward to generate estimates
P̂i(Ii). First, following our model, assume the following regression consistently estimates b:

Pi(Yi) = α + bYi + εi (12)

Estimates of the No Change price can be constructed with the No Change index and b̂:

P̂i(Ii) = Pi(Yi)− b̂ · (Yi − Ii)

Once an estimate of the counterfactual price is constructed, the impact of any change in
state can be estimated.

A particular case of interest is estimating the impact of change given the market’s current
beliefs. That is, it would be useful to estimate damages (or benefits) by comparing market
expectations to counterfactual prices that reflect no change in state. Only one set of predicted
prices needs to be used for this simplified estimate:

NPV of impact given current market beliefs =
∑

i

Pi(Yi)− P̂i(Ii) =
∑

i

b̂(Yi − Ii) (13)

The empirical analysis below will illustrate how this NPV can be estimated using readily
available data even though Yi is unobserved.

We make one final comment about price effects in our model. Like all Ricardian models,
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ours implicitly conducts partial equilibrium analysis. While this assumption is innocuous
for local shifts in supply of a globally traded commodity, it may introduce a bias by ignoring
general equilibrium price effects as global supply responds. If global productivity effects are
small, then the bias introduced by the partial equilibrium approach is also small. Estimates
of global changes in agricultural production arising from climate change range from negative
effects to positive effects, depending on climate scenario, assumptions about CO2 fertiliza-
tion, adaptation, and other parameters. Among three prominent studies (Parry et al. 2004;
Calzadilla et al. 2013; Lobell and Gourdji 2012), we found a range of about a 5% decline in
production to about a 1% increase in production, as a result of climate change. If we adopt
a price elasticity of demand of -0.4, then these translate into a range of rent effects from
+12.5% to -2.5%; these effects arise over the next 50-80 years (depending on the study).
Because land markets discount the future, these translate to much smaller price effects. On
the other hand, it is possible that global production losses from climate change could be
much more significant. In that case, while the concomitant price rise would at least partially
offset losses to farmers, consumers would be unambiguously worse off due to lower supply of
food and higher prices.

4 Data

The previous section showed that if the land market capitalizes expectations of future cli-
mate change, the standard Ricardian regression produces biased estimates. In the context
of climate change, these damage estimates are important inputs into policy construction
and debate. This and the following sections make three primary empirical contributions.
First, we assemble a comprehensive dataset to test whether land markets capitalize readily
available climate forecasts; this is the first test of its kind. Second, we use the results of the
empirical analysis to re-estimate the economic impact of climate change on the US agricul-
tural sector; this has important policy implications since current estimates of the damage
from climate change contain the bias we have identified. Finally, to close the loop between
our theoretical and empirical findings, we estimate the bias in damage estimates that arises
from (incorrectly) assuming that markets fail to capitalize predictions of future changes in
climate by comparing predictions under both assumptions.

To implement the analysis, we have collected a data set with observations on agricultural
land values for 2007, daily average temperature for the growing season and total precipita-
tion (defined over the period the previous 30 years, i.e., 1976-2006), the corresponding future
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climate predictions for the period 1900-2099 from two different global circulation models, soil
quality indicators, as well as other determinants of land values. We also make use of his-
torical agriculture data to further test model implications. We now describe these data and
report summary statistics.

Census of Agriculture Data
The primary data on agricultural land values are from the 2007 Census of Agriculture. By
law, all farms and ranches that produce and sell (or normally would produce and sell) more
than $1,000 of agricultural products are required to submit a census form. Counties are
the finest publicly available geographic unit of observation. The two key variables are the
average values of agricultural land and buildings in a county (interpreted in the literature
as farmland value, following MNS), and the total acres in farmland in each county. From
these we construct average agricultural land values per acre of farmland. This is the de-
pendent variable analyzed in most US applications of the Ricardian approach (Mendelsohn,
Nordhaus, and Shaw 1994; Schlenker, Hanemann, and Fisher 2005, 2006; Deschênes and
Greenstone 2007; Massetti and Mendelsohn 2011). We also use the same variables from the
1978-2007 Census of Agriculture to examine whether our empirical estimates of the market
belief in climate change varies over time.

Historical Weather Data
Weather station data are drawn from the National Climatic Data Center (NCDC) Global
Historical Climatology Network-Daily (GHCN-Daily), which is an integrated database of
daily climate summaries from land surface stations that are subjected to a common set of
quality assurance checks. According to the NCDC, GHCN-Daily contains the most complete
collection of U.S. daily climate summaries available. The key variables for the analysis are
the daily maximum and minimum temperature as well as the total daily precipitation. We
select weather stations that have no missing records in any given year from 1976-2006. The
station-level data are then aggregated to the county level by taking an inverse-distance
weighted average of all the measurements from the selected stations that are located within
a fixed 200 km radius of each county’s centroid. The weight given to the measurements from
a weather station is inversely proportional to the squared distance to the county centroid,
so that closer stations are given more weight.

The standard in the recent literature is to relate economic outcomes to climate using
functional forms that capture nonlinearities in the effects of climatic variables (Dell, Jones,
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and Olken 2014). We follow Schlenker and Roberts (2009) and use a two segment piecewise
linear regression model in growing season daily average temperature, defined as the average
daily temperature over the months of April to September (inclusive). In order to construct
historical climate variables we define the climate as the average growing season temperature
and total precipitation calculated over the previous 30 years in a given county. For example,
for the 2007 Census of Agricultural data, the climate is defined over 1976-2006. We search
over a grid of potential breakpoint values and select a breakpoint value that minimizes the
Akaike information criteria. This procedure selects a breakpoint at 68.5 oF; the temperature-
land price relationship is allowed to have different slopes above and below this point. This
breakpoint is similar to the sample average growing season temperature (69.1 oF), as we note
below. In the Appendix, we also provide results that use the standard quadratic specification
from MNS and a binned specification (Deschênes and Greenstone 2007).

Climate forecasts
Climate predictions are drawn from the IPCC Fourth Assessment Report (2007).15 This
report synthesizes climate forecasts, and is widely cited and drawn from in lay outlets.
Because the climate forecasts we use are the major models used by the IPCC, it is reasonable
to assume that these forecasts are also the most readily available to the general public and
may thus be considered as information available to the market. Our preferred set of forecasts
are obtained from the Hadley Centre Coupled Model, version 3 (Hadley 3), which is a coupled
atmospheric-ocean general circulation model. It is widely held that this version of the Hadley
model contains improvements over previous versions, which improve its ability to generate
spatial predictions for a number of reasons. Perhaps most importantly, it improves the ocean
resolution and the matching between oceanic and atmospheric sub-models. Essentially, the
atmospheric component and the ocean component are run iteratively for one day periods
over the length of the entire model simulations (which could be hundreds of years). This and
other models of its vintage are now widely used by the scientific community to provide high-
resolution spatial predictions of the effects of climate change (e.g. see Thuiller et al. (2005) for
an example exploring the spatial effects of climate change on plant diversity in Europe). The
spatial resolution of this model is approximately 300x300 km. The changes in temperature
and precipitation in non-irrigated US states are roughly in the middle of the ensemble of
models used for the IPCC Fourth Assessment Report (Burke and Emerick 2016). Predictions

15. See http://www.ipcc-data.org/sim/gcm_monthly/SRES_AR4/index.html for all data on future cli-
mate predictions.
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of climate change from this and other models used in the IPCC Fourth Assessment Report
are available for several emission scenarios, corresponding to ‘storylines’ describing the way
the world (population, economies, etc.) may develop over the next 100 years. We focus
on the A2 scenario, a “business-as-usual” scenario, which is the proper baseline scenario to
consider when evaluating policies to restrict greenhouse gas emissions. As such, predictions
from the A2 scenario feature some of the largest predicted increases in global temperature.

Additional climate forecasts are obtained from National Center for Atmospheric Re-
search’s Community Climate System Model (CCSM) 3, also a coupled atmospheric-ocean
general circulation model included in the IPCC 4th Assessment Report (NCAR 2007). We
focus on the A2 scenario to maintain consistency with the Hadley 3 model. Relative to
Hadley 3, CCSM 3 predicts roughly the same level of warming with a greater increase in
precipitation (Burke and Emerick 2013). As with Hadley 3, model predictions from CCSM
are widely publicized and are available to the public.

Because the spatial scale of these model predictions differ from one-another, and do not
directly align with counties, we use inverse-distance weighted averaging to assign gridded
predictions to counties in the same manner as for station-level weather data. All grid points
located in a pre-specified radius of a county’s centroid are used to assign the climate predic-
tion, with measurements from grid points located further away from the centroid receiving
less weight. A radius of 200 kilometers ensures that every county gets a prediction. From
these daily grid point level data we construct the same measures of average temperature for
the growing season and total precipitation for every county and year.16 Climate predictions
from both models are largely consistent across counties in our sample.17

In order to correct for inherent aggregate model bias that takes effect at the county
level, we use model predictions of historical climate and actual historical climate to create
corrected climate predictions following Auffhammer et al. (2013). In particular, we utilize
‘Climate of the 20th century’ runs of the Hadley 3 and CCSM 3 models and average together
the preceding 30 years for each climate variable and county i (Si,t). We correct using the
corresponding 30-year average for historical weather (S0i,t) as follows:

Si,t = Spredicted
i,t +

(
Si,t − S0i,t

)
16. The inverse distance weighting approach to assign future climate to counties created a few anomalous

assignments. These counties, primarily in Michigan, are excluded from this analysis. Consolidated cities in
Virginia were also excluded. In total, 39 counties are excluded; full details are in Appendix I.

17. The correlation coefficients between the Hadley 3 A2 and CCSM 3 A2 model predictions for precipitation
and growing season mean temperature range from 0.92 to 0.99.
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Because the ‘Climate of the 20th century’ runs only cover the period 1900-1999, for data
years 2002 and 2007 we correct using the average of data from 1969-1999.

Public Opinion Data on Climate Change
To provide an additional test of our model, we utilize high resolution (county-level) estimates
of climate change perceptions from Howe et al. (2015). This dataset contains estimates of
climate change perceptions constructed using multiple climate surveys and multilevel regres-
sion and poststratification (MRP) techniques. The underlying survey data are taken from
twelve nationally representative surveys conducted by the Yale Project on Climate Change
Communication and George Mason Center for Climate Change Communication between
2008 and 2013. Because these perception data are model estimates based on survey data in
combination with demographic and geographic predictors, Howe et al. (2015) perform both
internal cross-validation and external validation with independent, sub-national surveys to
verify the strength of their approach. MRP techniques in combination with validation have
been found to more accurately predict public opinion at disaggregated geographies than
other methods (Warshaw and Rodden 2012).

Other Predictors of Agricultural Land Value
We also include soil quality variables in this analysis, specifically measures of susceptibility
to floods, soil erosion (K-Factor), slope length, sand content, irrigation, and permeability.
The underlying data come from the National Resource Inventory (NRI). The NRI is a large-
scale survey of soil samples and land characteristics from roughly 800,000 sites in the United
States. These variables are calculated as weighted averages across sites used for agriculture,
where the weight is the amount of land the sample represents in the county. See Deschênes
and Greenstone (2007) for more details. Finally, we include controls in per capita income
and population density.

Sample Construction and Summary Statistics
Our sample consists of all counties located east of the 100th meridian with valid measurement
on farmland values in the 2007 Census of Agriculture. We restrict the analysis to counties
located east of the 100th meridian following Schlenker, Hanemann, and Fisher (2006) since
those counties rely primarily on rainfall as opposed to irrigation like the counties in the
American West. Because climate likely has a different effect on urban land prices, and
urban land prices can affect agricultural land prices through the potential for development
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(Plantinga, Lubowski, and Stavins 2002), we follow Schlenker, Hanemann, and Fisher (2005)
and exclude counties with a density of more 400 people per square mile or a population
greater than 200,000 at any point in our sample. The final sample consists of 2,112 counties
and the sample average value of land and buildings per acre is $2,834 (in 2005 dollars). The
average growing season temperature for the 2,112 counties over 1976-2006 is 69.1 oF and
ranges from 55.6 oF to 82.9 oF.

5 Empirical application

We now turn to implementing the theoretical asset pricing model to determine whether ex-
pectations regarding climate change predict current agricultural land prices in the United
States. Cross-sectional hedonic estimation methods potentially suffer from many identifi-
cation pitfalls, and addressing all of these satisfactorily is beyond the scope of this paper.
Instead, we focus on understanding the role expectations of climate change may already be
playing in land markets through cross-sectional and panel hedonic regression models.

5.1 Empirical specification

Ideally, we could directly implement an empirical version of Equation (12) in the theoretical
model:

Pis = α + Y ′isb+X ′isξ + γs + εis (14)

where Pis is the observed price per acre of land in county i in state s and Yis is the index
of beliefs about future climate change used by the market. Other county and land char-
acteristics are included in Xis. This includes both variables that are potentially exogenous
with respect to our measures of climate (such as soil salinity and slope), and variables that
may be correlated with land values (such as development pressure and other demand vari-
ables). Our preferred specification includes state fixed effects (γs) to capture state-specific
unobserved factors that predict land values (and may be correlated with climate) such as
agricultural policy, taxes, uncertainty, etc. Since there may be a limited extent of climatic
variation within some states (both historically and in terms of future climate predictions from
GCMs), we also report estimates from models that exclude state fixed effects. In general,
both sets of estimates are qualitatively similar.

Recall that Y represents an index of beliefs about the future climate: Y ≡ ∑∞
t=0 Stδ

t.
The central issue in implementing regression model in Equation (14) is that while a variety
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of climate forecasts are observable by landowners and by the econometrician, actual market
beliefs (Y ) are not observed. It follows that implementing such regression models requires
assuming a model for Y . We develop an approach that incorporates both historical climate
data and climate forecasts. The two climate models compete to explain observed land prices,
and provide an empirical test for whether land prices are formed on the basis of historical
or future climate.

5.2 Testing whether land markets capitalize expectations

Though the analyst does not directly observe Y , data are readily available on many climate
forecasts as well as on current and historical climate. These climate forecasts have been
developed in part for the IPCC’s Assessment Reports, and have been frequently reported
by various media outlets and discussed extensively by policy makers and scientists.18 While
individuals may not be directly aware of all this information, it is reasonable to expect a
forward-looking market to have capitalized this information into the average county prices
we observe. Thus, we can use these data to develop plausible estimates of climate change
beliefs, although alternative data and information sets surely are used by rational market
agents.

Instead of taking a firm stance on which forecast best represents market beliefs, we utilize
a flexible parametric model that permits linear mixing of different climate scenarios. The
model estimates a weight parameter that determines the relative importance of a particular
climate model to best match observed prices. This parameter can also be interpreted as
the degree to which the market ‘believes’ that climate forecast. To maintain tractability,
we select two climate change scenarios: a no-change scenario (S0i represented by historical
climate variables that are used in the standard application of the Ricardian method), and an
observed forecast scenario (Sit, represented by the data from either the Hadley 3 or CCSM 3
Scenario A2 models). We assume that market beliefs are a weighted average of the no-change
and observed forecast scenarios.19 Specifically, suppose we consider data dated from 2007 to

18. In fact, the IPCC has ensured that the results of thousands of climate change simulations performed
by seventeen scientific collaborations are available in common format to the general public.

19. We focus on two scenarios, but adding additional scenarios is straightforward.
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2099 and let Ŷi be the constructed Mean Forecast for county i:

Ŷi(ω) =
2099∑

t=2007
ωS0iδ

t−2007 +
2099∑

t=2007
(1− ω)Sitδ

t−2007

= ωIi + (1− ω)Fi (15)

where Fi = ∑2099
t=2007 Sitδ

t−2007 corresponds to the Observed Forecast index in Section 3.1. The
data specify the Mean Forecast index up to a scalar parameter ω that can be estimated
jointly with the other parameters of the model (but maintaining an assumed value of δ).
This structural parameter defines the weighting the market places on each of the two climate
change scenarios.20

An advantage of this parameterization is that it permits testing whether or not land
markets are capitalizing expectations. Because the constructed market beliefs above include
historical (no change) climate as one of the climate scenarios, the parameter ω ∈ [0, 1] can be
interpreted as the weight the market places on the possibility that climate will not change.
If ω = 1, then the market places no weight on expectations about the future climate. This is
implicitly the assumption made in current applications of the standard Ricardian method.
Alternatively, if ω < 1, then the market places some weight on the Observed Forecast Fi,
and beliefs about climate change are being capitalized in the land market.

The feasible version of Equation (14) is given by:

Pis = α + Ŷ ′is(ω)b+X ′isξ + γs + εis (16)

where {α, b, ω, ξ, γ} are all parameters to be estimated. Since the vector of parameters b and
the scalar parameter ω enter multiplicatively, we estimate Equation (16) using non-linear
least squares (NLLS) to jointly estimate b and ω. Since ω enters Equation (16) linearly,
calculation of the marginal effects is not complicated by non-linearities in ω. However, the
interpretation of the marginal effects needs qualification: b captures the effect of marginal
changes in the constructed market beliefs Ŷ (ω), not of historical climate. Finally, since we
interpret ω as a weight, we expect it to lie on the unit interval. Most specifications yield
results such that ω̂ ∈ [0, 1], or statistically indistinguishable from the boundaries. In the few

20. We model climate as a piecewise linear function in temperature. This means that climate is piecewise

vector in temperature:
(

ωIi + (1− ω)Fi

ωIi1[Ii>T̄ ] + (1− ω)Fi1[Fi>T̄ ]

)
where T̄ is a temperature breakpoint. Precipitation

is binned.
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cases this does not occur, we normalize ω to lie in the unit interval.21

6 Empirical Results and Discussion

We apply the forward-looking Ricardian method by estimating Equation (16); we then
present the parameter estimates and predicted climate change damages. We have three
specific objectives. First, we confirm that the indices formed from climate forecasts are
relevant predictors of land values. We report the OLS coefficient estimates from Ricardian
regressions that include both historical climate indices (based on the 1976-2006 averages in
seasonal weather) and forecast climate indices (based on the Hadley and CCSM data for
2007-2099). This analysis provides a simple test of whether forecast climate indices are rele-
vant predictors of current land values conditional on the historical climate indices and serves
as motivation for the ensuing NLLS estimation procedure.

In the second part of the analysis, we test whether land markets capitalize expectations
about future climate by estimating the parameter ω in Equation (16) and performing the
required statistical test. We also estimate and report the theoretically correct climate-price
gradient parameters b. This section illustrates that the proposed forward-looking Ricar-
dian method is empirically relevant and simple to implement with readily available data.
Furthermore, we show that this critique is useful across a variety of model specifications.

Third, we use the empirical estimates of b and ω to derive the predicted damage of
climate change on U.S. agriculture assuming that climate evolves in a manner consistent
with market beliefs. We compare the market’s expected damage estimates obtained from
the theoretically correct forward-looking Ricardian method and the ‘myopic’ versions based
on Equation (8). The results are substantially different, and indicate that failing to control
for market beliefs causes the analyst to misstate the impacts of climate change.

We perform several additional tests that validate the importance of accounting for market
beliefs. We exploit spatial heterogeneity in perceptions of the likelihood of climate change
and show that variation in county-level climate change perceptions impacts the relationship
between climate and the price of agricultural land in a reasonable manner. We also confirm
that our results are not sensitive to the choice of discount rate. Finally, we pool data on
land values, climate, and climate expectations over 1978-2007 to estimate how the climate
change belief parameter (ω) has evolved through time.

21. This occurs only during exploring the robustness of δ = 0.03. In this case: ω = g(ω̃) = 1
1+exp (ω̃) where

ω̃ can take any value on the real number line.
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At the same time, we acknowledge that there are a large number of factors that affect
land values, and as such, the cross-sectional regression estimates we report here may still
reflect omitted variable bias.22 The approach we propose identifies and addresses one im-
portant source of bias, and suggests that commonly used approaches for addressing omitted
variables bias (such as including fixed effects) may be insufficient in the case of outcomes of
forward-looking markets. Since our empirical model does not control for unobserved land
value determinants that may be correlated with climate, we do not claim that the empirical
estimates reported in the paper correspond to ‘causal’ estimates of the climate-price gra-
dients. Nevertheless, to minimize concern about spatially correlated omitted variables, our
preferred specifications include state fixed effects (Kuminoff, Parmeter, and Pope 2010).

6.1 Estimates for US agricultural land east of 100th meridian

Our primary specification utilizes cross-sectional data from the 2007 Agricultural Census
for the agricultural counties located east of the 100th meridian. By 2007, the possibility
of climate change was plausibly in the information set of farmers and market participants,
particularly given the broad media attention given to the topic throughout the early 2000s.
Various polls suggest that the American public is concerned about the possibility of climate
change (for example, Howe et al. 2015 and Leiserowitz 2007). As such it is reasonable to
assume that observed land values reflect expectations about the future climatic conditions
associated with each county.

Table 1 begins the analysis by reporting OLS coefficients from Ricardian regressions that
include six historical climate indices. We first model the effect of temperature through a
piecewise linear regression and include separate effects of growing season average temperature
around the breakpoint of 68.5 F. For annual precipitation we construct five bins roughly
corresponding to quintiles of the 1976-2006 distribution: less than 24 inches, between 24-36,
36-43, and 43-51 inches, and more than 51 inches annual precipitation. The 36-43 inches bin
serves as the omitted category.

The corresponding estimated coefficients are reported in columns (1) and (2) of Table 1.
The coefficient estimates from columns (3a)-(4b) are from regressions that include both the
six historical climate indices and six forecast climate indices from the Hadley 3 or CCSM 3
Scenario A2 data. Since both the historical and forecast climate indices are scaled up by the
proportionality factor D associated with the 3% discount rate, the coefficient estimates can

22. Recent research demonstrates that cross-sectional hedonic regressions may produce unreliable estimates
in a variety of settings (Black 1999; Chay and Greenstone 2005; Deschênes and Greenstone 2007).
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be interpreted as the PDV of a one degree increase in average growing season temperature,
with a potentially different slope above or below the breakpoint over the period 2007-2099
on 2007 land values. The coefficients on the annual precipitation bins measure the PDV of
changing precipitation from the reference category (36-43 inches) to any of the other four
categories. Finally, the standard errors associated with the estimates in Table 1 (and all
other tables) are clustered at the state level in order to allow for spatial correlation of the
regression errors within states.23

The estimated coefficients in columns (1) and (2) are generally similar and indicate that
increases in average growing season temperatures beyond 68.5 F reduce land values. Low
rainfall areas (e.g., less than 24 inches) also have lower farmland values. Because climate
is measured in PDV units, coefficients must be scaled appropriately (by the proportionality
factor, D = 32.1 based on r = 0.03). For example, the coefficients in column (2) reveals
for example that a sudden one degree increase in average growing season temperature above
68.5 F sustained between 2007 and 2099 is associated with a −10.55×D = $339.04 per acre
decrease in land values.24

The regression model underlying the estimates in columns (3a) - (4b) incorporates both
forecast climate indices and historical climate indices. The estimated coefficients associated
with each seasonal climate variable are reported in two sets of columns, corresponding to
the same regression equation (i.e., (3a) and (3b) are from the same regression equation).
Columns (3a) and (4a) show the coefficients associated with the historical climate indices,
while columns (3b) and (4b) report the coefficients of the expected climate indices based on
the CCSM forecast and the Hadley forecast. The specifications in columns (2), (3a)-(3b),
and (4a)-(4b) include state fixed effects to control for unobserved time-invariant predictors of
farmland values that may vary at the state level. We note that inspecting columns (1) and (2)
(for historical indices only) and (3b) and (4b) (which include climate forecasts), the effects of
temperature on land value are highly nonlinear. This underscores the spatially-heterogeneous
effects of climate change and drives home the importance of the forward-looking approach.

The F-statistics reported in the bottom of Table 1 test the joint significance of each of the
relevant six climate indices in the regressions and indicate that forecast climate indices are
important predictors of current land values. In each specification, each set of climate indices
(historical and forecast) are jointly significant with p-values less than 0.02. For example,

23. There are 37 states in the sample and so concerns about cluster-robust inference with a small number
of groups are likely secondary here.

24. The model specification is such that a one unit increase in Yi is equivalent to 1/D = 0.031 sustained
increase from 2007-2099 (with r = 0.03).
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when the forecast climate indices are constructed using the CCSM data (column 3b), the
F-statistic is 3.20, while the corresponding F-statistic for the Hadley forecast indices (column
4b) is 3.32. By comparison, the F-statistics associated with the historical climate indices are
6.38 and 6.50. The importance of the forecast climate indices as predictors of land values is
also evident since the estimated negative effect of high temperatures on land value is larger
(and statistically significant) for the forecast climate indices and not for historical climate
indices (see columns (3b) and (4b). We now turn to a more structured analysis of whether
land markets capitalize expectations about future climate by estimating the parameters of
the forward-looking Ricardian model.

Table 2 reports the NLLS regression parameters estimates from Equation (16) along
with the estimated standard errors. Columns (1a) - (1d) correspond to the estimates from
the model with market beliefs formed using the CCSM forecast, and columns (2a) - (2d)
correspond to the case with market beliefs formed using the Hadley forecast. In each case, the
(a) and (c) columns report the parameter estimate, and the (b) and (d) columns report the
estimated standard error. The (a) and (b) columns are from models that exclude state fixed
effects, and the (c) and (d) columns are from models that include them. In each regression,
there are 6 climate parameters, corresponding to the average growing season temperature
terms (below/above 68.5 oF) and the annual precipitation bins variables.

The first row in Table 2 reports the estimate of the parameter ω, the weight assigned
by the market to the No Change (as opposed to the Observed Forecast) scenario. Recall
that ω can be interpreted as the market’s belief that climate change will not occur; 1 − ω
then represents the market belief that climate change will occur (as represented by either
the Hadley or CCSM models). Across all specifications the estimated parameter ranges from
0.39 to 0.47 and the hypothesis that ω = 1 is rejected with a p-value less 0.05 in all models.
In the prefered specification that include state fixed effects the estimate of ω is slightly larger
and is also statistically different from 0 at the 5% level. Adding to the evidence presented
in Table 2, it is clear that expectations about the future climate appear to already be priced
in the agricultural land markets.

The next rows of Table 2 report the estimated effects of the individual components of
Ŷi(ω) on land values. The F-statistics reported in the bottom of Table 2 indicate the land
market capitalizes the information about future climate that is contained in the constructed
forecast indices. These test the joint significance of the 6 variables in Ŷi(ω) that are included
in the NLLS regressions. In the case of beliefs based on the CCSM forecast (1a) and (1c),
the F-statistics are 8.44 and 10.62, while for beliefs based on the Hadley forecast (2a) and
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(2c), the F-statistics are 8.80 and 6.85. In all cases the p-values associated with these tests
are 0.001 or less.

The estimated coefficients again indicate that expectations about future climate change
predict current farmland prices. Like in Table 1, the strongest negative predictors of land
values are average growing season temperature above 68.5 oF and annual precipitation less
than 24 inches. Further, the results are robust to both specifications of the forecast climate
indices. In particular, comparison of the coefficients in (1a) and (2a), and (1c) and (2c)
reveals estimated effects that are generally of same sign and similar magnitude across the
two specifications of climate change beliefs. It is notable that the inclusion of the state
fixed effects does not generally alter the statistical significance of the estimated coefficients:
all of the statistically significant coefficients in columns (1a) and (2a) remain significant in
columns (1c) and (2c). Given this, we now focus on the specification with state fixed effects
as it appears well identified in the data and provides better control against omitted variables
bias.

Table 3 reports the total present value of the climate change impacts as well as the
corresponding annualized impacts. The annualized impacts are calculated by scaling the
total present value impacts by the proportionality factor implied by the discount rate of 3%.
The annualized impact is interpreted as the average yearly impact of climate change over
the period 2007-2099, while the total present value is simply the sum of discounted impacts
from 2007-2099. We report estimates corresponding to three different models of beliefs about
future climate change: beliefs given by the weighted sum of the No change index Ii and the
CCSM3 Observed forecast index Fi (with weight corresponding to the empirical estimate of
ω in column (1c) of Table 2), beliefs given by the weighted sum of the No change index
Ii and the Hadley Observed forecast index Fi (with weight corresponding to the empirical
estimate of ω column (2c) of Table 2), and beliefs based only on the No change index Ii.
This final set of beliefs corresponds to the approach taken in previous applications of the
Ricardian method, which imply the restriction ω = 1.

The present value of the change in farmland values due to climate change across all
counties in columns (1) and (2) of Table 3 is given by applying Equations (13) and (15) to
a specific model for belief formation, and the related empirical estimate of ω, denoted by
Ŷi(ω̂): ∑

i

(Ŷi(ω̂)− Ii)′b̂ = (1− ω̂)
∑

i

(FHad3A2 or CCSM3A2
i − Ii)′b̂Forward-looking

This measure of damages corresponds to the total impact of climate change if climate evolves
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as the market anticipates (i.e. following the linear mixture of historical climate and forecast
climate). We calculate the effects of climate change under the myopic, No Change Ricardian
model as ∑

i

(FHad3A2 or CCSM3A2
i − Ii)′b̂Myopic

This myopic value suffers from two sources of bias: (i) the estimated values of b̂ may be
biased, and (ii) it is implicitly assumed that ω = 0.25

Table 3 indicates that if beliefs are defined as a mixture of the CCSM data and historical
climate and the estimated model describes how climate indeed evolves, the total present
value damage of climate change is $215.4 billion over the next century, annualized to $6.7
billion (column (1), rows 1 and 3). On the other hand, if beliefs are defined as a mixture
of CCSM data and historical climate and the future climate path instead follows a mixture
of historical climate and the Hadley forecast, the predicted total present value damage of
climate change is slightly larger at $226.6 billion. These estimates, like all others reported in
Table 4, are statistically significant at the conventional level. The other predicted impacts
in columns (1) and (2) correspond to the case where beliefs are modeled on one climate
model, but the realized future climate path evolves according to the other. These estimates
are qualitatively similar to the others.

By comparison, estimates of the present value of damages up to 2099 from the application
of standard Ricardian approach (the ‘No change’ index in column 3) range from $453 to $507
billion. Estimates of the impact of climate change that account for the fact that the land
market capitalizes expectations about future climate are smaller in magnitude than standard
Ricardian estimates by 50% to 62%, depending on the specifics of the model. Notably, all
estimates in Table 3 are negative (indicating net losses from climate change) and are relatively
large (the entire value of US agricultural farmland, buildings, and holdings in 2007 was $1.74
trillion, while total production and payments to the agricultural sector was about $297 billion
in 2007).26 The bias demonstrated in the theoretical section is economically important: In
dollar terms, the bias in the myopic Ricardian model (i.e. comparing column (3) to (2) and

25. Alternative analysis could predict the impact of climate change if climate evolves precisely according
to the climate forecast, Fi, rather than according to mean market beliefs, Yi(ω). This would remove the
second source of bias in the myopic results. Such estimates can easily be calculated by multiplying the
results presented in Table 4 by an adjustment factor of 1/(1 − ω). This adjustment factor is greater than
one and would increase the absolute magnitude of estimated damages. For example, if ω were to equal 0,
the predicted climate change damages would be -406.6 and -391.5 (CCSM3 composite index) and -363.0 and
-349.3 (Hadley3 composite index).

26. These values are from the 2007 US Census of Agriculture.
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(1)) is large and corresponds to about 18% of total US agricultural farmland, buildings, and
holdings in 2007.

While Table 3 reports estimates of the climate change impacts from the baseline specifi-
cation in six climate variables, we also explore the robustness of these results to alternative
functional forms. Appendix Table 2 report the NLLS coefficients estimates (corresponding
to Table 2) and the predicted climate change impacts (corresponding to Table 3) when the
specification of the forward-looking Ricardian regression is based on the original MNS spec-
ification (linear and quadratic terms in average season temperature and precipitation, for
a total to sixteen climate variables). The estimated climate change impacts based on the
quadratic climate indices specification are larger than the ones reported in Table 3, although
the differences are small relative to the difference in the standard errors. The estimated
total present value of the climate change impacts range from predicted losses of $396 to $777
billion. More importantly, the estimates of the market’s belief parameter ω from the model
where the climate variables are represented by quadratic terms range from 0.31 to 0.51,
largely consistent with the estimates of ω reported in Table 2. Appendix Table 3 similarly
reports NLLS coefficient estimates and predicted climate change impacts when the specifi-
cation of the forward-looking Ricardian regression is based of these flexible bins in long-run
average temperature and total precipitation. Specifically, we define 10 temperature bins as
follows: one for the number of days with daily mean temperature less than 10◦F, one for the
number of days daily mean temperature greater than 90◦F, and the eight 10◦F wide bins in
between. For each county we then average these bins over the 1976-2006 period, which pro-
duces the long-run average number of days per county-year where daily average temperature
falls in each of the 10 categories. The annual precipitation variables are modeled using the
same bins definition described in section 6.1. While the estimated climate change impacts
based on the the binned climate indices specifications are smaller than the ones reported in
Table 3 and Appendix Table 2, the magnitude of ω is similar.27

6.2 Varying the discount rate

The empirical implementation of the forward-looking Ricardian model requires an assump-
tion about the discount rate. In the preceding analysis, we assumed a discount rate of 3% to
reflect the long run nature of rural land investments. For policy analysis relating to climate

27. A caveat of this specification is that it imposes stronger information demands on the land market buyers
who need to pay attention to variability in the numbers of days in each bin, not just the average growing
season temperature as in the piecewise linear model
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change or other multi-generational phenomena, economic arguments justify using discount
rates that more closely equate distant future and near term time horizons (Weitzman 1998).
In this case 3% may be too large or small, so we estimate damages over a range of discount
values from [0.5%, 6.5%]. This covers a wide range of time horizons.28

Figure 1 shows the estimated ω and climate change impacts associated with a wide range
of discount rates. As in the prior analysis, these results are based on beliefs constructed
from the Hadley and CCSM data and we use the same piecewise linear regression in average
growing season temperature that underlies Tables 2 and 3. The estimates in Figure 1 are
obtained from estimating versions of Equation (19) that are constructed using the different
assumptions on the discount rate (in order to form Ŷ (ω)) and that include state fixed effects
and all the other control variables. Overall, we find that the estimated market belief param-
eters are similar for the range of discount rates we consider. For the beliefs constructed using
the Hadley data the estimates of ω range from 0.34 to 0.53, while for the beliefs constructed
using the CCSM data, the estimates of ω range from 0.46 to 0.52. Thus it is evident that
the estimates of ω reported in Table 3 are not strongly influenced by the choice made on the
discount rate. Figure 2 graphically reports the estimated climate change impacts associated
with the various discount rates. These are obtained from the same regressions underlying
Figure 1. The entries are in billions of 2005 dollars. Several noticeable patterns emerge from
Figure 2. As expected, it is evident that predicted damages are larger when the discount
rate is smaller. For example, the damages associated with a discount rate of 1% are around
negative $250 billion for both sets of constructed beliefs. A discount rate of 3% returns
the same damage estimates as those reported in Table 3 (-$202.2 for Hadley and -$215.4
for CCSM). For larger discount rates, the gap between the Hadley-based and CCSM-based
damages grows: for example when the discount rate is 6.5%, the CCSM damage is 34%
larger than the Hadley-based damage.

6.3 Heterogeneity in public beliefs about climate change

There is substantial heterogeneity in the degree to which different economic agents assess the
likelihood of climate change. Even among rural farmers in the US Midwest, there is variation
in opinions over the likelihood of severe climate change and its causes (Arbuckle et al. 2013).
Such differences could confound our estimates if these perceptions are correlated with the

28. For example, a constant revenue stream reaches 95% of its discounted value after 98 years with a
discount rate of 3%, while this takes 297 years with a discount rate of 1% and 58 years with a discount rate
of 5%.
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mean path of climate evolution. The existence of heterogeneity also suggests an additional
test of our hypothesis that land markets capitalize future climate expectations: land values
in counties where climate change is thought to be more likely should reflect future climate
forecasts more strongly than in counties where beliefs in the likelihood of climate change are
weaker.

To this end, we again estimate Equation (16), but now incorporate the estimated per-
centage of each county’s population who think that ‘global warming is happening’ (using the
Howe et al. 2015 terminology).29 We incorporate this variable in two ways. First, we include
it as a linear predictor of land values in the vector X. This provides a simple test of whether
climate change perceptions are correlated with land prices. Second, we allow the parameter
ω to vary across counties as a function of the local level of belief in climate change. This
amounts to interacting beliefs with climate levels:

ωi = 1
1 + exp (θ0 + θ1SCCHi)

where SCCHi denotes the share of each county’s population who think that global warming
is happening, taken from the Howe et al. (2015) data. If θ1 is positive, then higher local
perceived likelihood of climate change is associated with a lower value of the parameter ω
and higher weighting on future climate, supporting our hypothesis.

Results from this analysis are shown in Table 4. All models include state fixed effects.
Columns (1) and (4) reproduce columns (1c) and (2c) in Table 3 and restrict the market belief
parameter ω to be same across all counties. Columns (2) and (5) maintain this restriction, but
introduce the county-specific climate change perception (SCCH) as an additional predictor
of land values. In both specifications, the coefficient on the share of population ‘believing
climate change is happening’ is positive but statistically significant. The estimated market
belief parameter ω are the same as in the baseline specification of columns (1) and (4). In
columns (3) and (6) we consider specifications where local perceptions of the likelihood of
climate change is added both as a main effect and as a variable that can affect the market
belief parameter, as in the above equation. Specifically, we estimate the parameters θ0

and θ1 (in addition to the climate price gradient parameter vector b), and then construct
predicted market beliefs as a function of SCCH (share of population ‘believing climate change
is happening’). These predicted values (and standard errors) are reported in the lower panel
of Table 4 for low (SCCH=45), mean (SCCH=57.7), and high (SCCH=76) perceptions of

29. The variable ‘happening’ in Howe et al. (2015).
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the likelihood that climate change is happening.30 In both the (3) and (6) specifications,
there is a clear inverse relationship between the predicted market belief parameter ω and the
county-level perception of climate change. Counties where climate change is perceived as a
low likelihood (SCCH=45) have large estimates of ω in the 0.77-0.81 range, while counties
where climate change is perceived as a high likelihood (SCCH=76) have estimates of ω equal
to 0.14 (and statistically indistinguishable from 0). This evidence suggests that land values
in counties with higher population shares believing that climate change is happening are
priced with a higher weight on climate forecasts (represented empirically by the Hadley and
CCSM forecast indices) as opposed to historical climate.

6.4 Evolution of climate change beliefs over time

Using data on land values, county agricultural characteristics, and climate indices from prior
years, we explore the evolution of the market belief parameter over time. This approach
provides a simple specification test of the assumptions of our model and its empirical credi-
bility. A priori, we expect that the market belief for the ‘No change’ scenario (ω) will grow
larger as it is estimated from older data when public information on the prospects of climate
change was not as widespread. In other words, we expect the estimate of ω for 2007 to be
smaller than the corresponding estimate for 1978 (reflecting a stronger market belief in the
likelihood of climate change in 2007 than in 1978).

We estimate an augmented version of regression Equation (16), but pool the data from
1978 to 2007 and include year fixed effects:

Pist = αt + Ŷ ′is(ωt)b+X ′istξ + γs + εist (17)

The market belief parameter ωt is permitted to vary over time; all other parameters are
restricted to be the same across periods (with the exception of year fixed effects); some
covariates are time-varying. The constructed climate belief indices Y (ω) are constructed in
the same manner as Equation (15), with the exception that indices for earlier periods are
discounted back to the relevant year (e.g., the indices for 1978 are discounted to 1978).

30. Note that our measure of climate change beliefs (SCCH) is generated from from a multilevel regression
model. Using a generated regressor results in consistent coefficient estimates but inconsistent estimates of
coefficient standard errors (Pagan 1984; Murphy and Topel 1985). Conducting inference based on these
standard errors generally leads to over-rejection of the null hypothesis. We do not adjust for this source of
error because we do not have data corresponding to the ‘first stage’, and instead advise caution in performing
inference from these regressions.
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Table 5 reports the coefficient estimates for the market belief parameters, when beliefs
are constructed from the CCSM (columns 1a and 1b) and Hadley (columns 2a and 2b) data.
The F-statistics at the bottom of the table test the equality of the market belief parameters
over the period 1978-2007, excluding any values of ω that are on the boundary of [0, 1].31

For both sets of constructed beliefs, the hypothesis of equality is rejected by the data at
the 6% and 8% level, respectively. It is also evident that the patterns in the estimated
parameters correspond to our intuition regarding the salience and public knowledge about
ongoing climate change. In earlier years, ω is larger, and as time moves forward, ω decreases
as the market incorporates the greater threat and likelihood of climate change. Overall, this
simple test also supports our working hypothesis about the land market incorporating more
information over time about expected future climate change in pricing agricultural land.

7 Conclusion

A fundamental underpinning of capital asset theory is that anticipated changes in future
benefits associated with an asset will be capitalized into its current price. This key insight
is routinely applied in hedonic regressions designed to value non-market attributes in order
to assess the impact of expected future changes. For example, climate can affect agricul-
tural land values, zoning regulations can affect housing markets, and financial or workplace
regulations can affect a company’s valuation.

The canonical application uses historical data to estimate the response of asset prices
to exogenous variation in a variable of interest that is expected to change in the future.
Given an empirical estimate of the relationship between asset values and the variable of
interest, it is straightforward to predict the costs or benefits associated with expected future
changes in this variable. This approach has been applied across numerous economic assets
in many sectors, and reported in hundreds of papers. The primary purpose of this paper
is to show that the empirical component of this approach to economic valuation contains
a fundamental assumption that is unlikely to hold in today’s information-rich society. The
implicit assumption is that the market is completely ignorant of the future change that is
now anticipated by the analyst. We propose and test a straightforward correction that allows
current asset markets to capitalize expectations about future climate change.

In climate change applications, scientists often predict increasing temperatures and chang-
ing precipitation patterns, but all empirical applications of the Ricardian method in the

31. This renders the statistical tests of equality conservative.
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literature implicitly assume that current land markets ignore these predictions. While this
assumption was quite plausible in the 1980s and 1990s, it is reasonable to wonder whether
land markets are starting to account for publicly available climate forecasts. Ignoring this
possibility leads to bias in the standard Ricardian regression. We derive the direction and
magnitude of the bias, and show how it can be corrected. The direction and magnitude of
the bias turns out to hinge on the correlation between past and future states and on the
variances of those states. The bias can be positive, negative, or (in very special cases) zero.

We find clear evidence that current agricultural land markets already capitalize expec-
tations about future climate: Future climate indices derived from climate predictions from
the Hadley 3 and CCSM 3 global circulation models are shown to be important predictors
of current land values, conditional on historical climate indices, state fixed effects, soil char-
acteristics, and other predictors of farmland values typically used in standard application of
the Ricardian method. Thus, while the theoretical points we derive here are relevant whether
or not current markets already capitalize future climate, we have also shown that this effect
may already be unfolding across the United States. Our simple empirical illustration indeed
suggests that ignoring the capitalization of future climate expectations in the Ricardian
method may lead us to overestimate climate damages by about 50%. Overall we view the
evidence reported in this paper as strongly consistent with the hypothesis that land markets
are forward looking and view our paper as a first step in what we hope will be a fruitful
line of future research. In particular, we acknowledge that the evidence presented here is
not fully definitive and warrants more research. Future research should attempt to lever-
age quasi-experimental variation (due to, for example, unanticipated information shocks) in
order to identify the effects of expected climate change on current land markets.
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