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Appendix I: Excluded counties and county equivalents

The inverse distance weighting method used to translate gridded climate data from Hadley
3 and CCSM 3 to county centroid data experienced minor issues in some counties at the
geographic edge of our sample in Michigan and Florida. Independent cities (which are
county equivalents) in Virginia are also excluded; these are typically smaller in land area
and urbanized. Weighting failed to produce estimates for one county in Missouri. By state,
these counties and county equivalents are:

FLORIDA: Miami-Dade, Monroe.

MICHIGAN: Alcona, Alpena, Charlevoix, Cheboygan, Chippewa, Emmet, Keneenaw,
Luce, Mackinac, Montmorency, Ostego, Preqsue, Sanilac, Schoolcraft.

MISSOURI: Ste. Genevieve.

VIRGINIA: Albemarle, Alleghany, August, Bedford, Campbell, Carroll, Dinwiddie, Fair-
fax, Frederick, Greensville, Henry, Montgomery, Pittsylvania, Prince George, Prince William,
Roanoke, Rockbridge, Rockingham, Southampton, Spotsylvania, Washington, Wise.
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Appendix II: Alternate models

Climate uncertainty

This section briefly describes a simple way in which climate uncertainty could enter into the
model presented in the main body of the paper.

Suppose that the future sequence of states St is uncertain, but that the market anticipates
the possibility of change in the state. Market information about the evolution of states at
time t = 0 is public and denoted by Σ. Belief formation over the evolution of the state space is
the process of mapping information to a set of probability spaces. These probability spaces
share support Ω (the state space) and an appropriate σ-algebra, but possess potentially
different probability measures for each period from t = 0 until the market’s horizon T
periods later.a Beliefs about period t 6= 0 formed in period t = 0 are represented by a
probability density function over states: ft. Thus, market beliefs are the mapping:

Σ→ {f0, f1, . . . , fT}

The market information set is the product of a series of distributions from the current
period into the future; given a set of realizations (one from each period), prices would be
deterministic. Market beliefs, in the form of this sequence of distributions, can take any path.
For example, if climate change implied local warming with constant variance, then ft+1 would
stochastically dominate ft in each period. Under no arbitrage, the market capitalizes this
information in an efficient manner and the pricing function can be recast as an expectation
that now depends on the information set Σ:

P (Σ) = E0[
∞∑
t=0

δtp(St)] =
∞∑
t=0

(
δt
∫
s∈Ω

p(s)ft(s)ds
)

Rewriting this in terms of the linear approximation and simplifying gives:

P (Σ) = aD + b
∞∑
t=0

δtE0[St] (A1)

Under uncertainty about future states, our implicit assumption of risk neutrality implies
that the market prices the asset according to the expectation of the evolution of the state.
Thus, only the path of mean beliefs determine prices.

The use of risk neutrality here is neither necessary nor as strong an assumption as it may
seem. While individual farmers may be risk averse, the presence of crop insurance means that

a. In principle, T could be ∞. In practice, we restrict T to be about 100 years. For reasonable values of
δ, the role of periods beyond 100 years in the future is minimal.

A2



they are somewhat protected from annual fluctuations in weather, mitigating the effects of
risk. Further, we use spatially delineated fixed effects to control for the potentially correlated
effects of variability, to which uncertainty could contribute; see below.

Under the assumptions of this simple model, the path of mean forecasted states {E0[St]}∞
t=0

and knowledge of the slope of the rental function p with respect to the state are suf-
ficient to describe prices. Further, if the asset rental rate equation is quadratic in the
state variable (as modeled in MNS and virtually all other applications of the Ricardian
method), a variant of this sufficiency holds with one additional assumption: If V ar(St) is
constant (or exogenous) across observations, then again only the mean belief path mat-
ters. However, if places with systematically higher draws of St also experience system-
atically higher or lower variance than St, then Equation (A1) should be augmented to
include a variance and covariance terms, as in Kelly et al. (2005). For example, con-
sider the quadratic case, P = ∑∞

t=0 δ
t(a + b0E[St] + b1E[S2

t ]), which can be expressed as
P = ∑∞

t=0 δ
t(a + b0E[St] + b1(V ar[St] + E[St]2)). We include the squared expectation term

in our specifications. Thus only the variance term is troubling; the variance term can be
interpreted as capturing a local approximation of risk. Its presence only adversely impacts
empirics only if the variance of beliefs about climate in each year varies across location in
a way that is systematically correlated with expected climate. Instead, we include spatially
delineated fixed effects in our empirical analysis to limit the impacts of this variance term.

Again consider two different scenarios, one describing a world with a constant state
(St = S0 ∀t) and the other where a distribution of potential state changes is anticipated.
Assume that δ < 1 and | limt→∞ E[St]| <∞. Let the climate change be:

I ≡
∞∑
t=0
S0δ

t (i.e., the No Change index) (A2)

Y ≡
∞∑
t=0

E0[St]δt (i.e., the Mean Forecast index) (A3)

To illustrate the consequences, we derive the correlation between S0i and Yi. This requires
assuming a model describing how expectations about the future state are formed so that
we can derive a practical expression for Y that can be implemented with available data.
For simplicity, consider the case where beliefs have discrete support, assigning probabilities
with positive measure to a finite number of (potentially time-varying) values in the state
space.b Equation (A1) can be partitioned into a component that depends on the current
state (S0i), and a component derived from alternative expectations about Sti. Define by
πt = Pr(Sti = S0i) the probability that the current state is realized in period t. Then:

Yi =
( ∞∑
t=0

δtπt

)
S0i +

( ∞∑
t=0

δt(1− πt)E[Sti|Sti 6= S0i]
)

b. In the climate change example, this would be like assigning a (potentially time-varying) probability to
each path of climate change available in the IPCC reports.
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and so

Pi(Yi) = α + b

( ∞∑
t=0

δtπt

)
S0i + b

( ∞∑
t=0

δt(1− πt)E[Sti|Sti 6= S0i]
)

+ εYi (A4)

If the analyst proceeds following the standard Ricardian approach (omitting the second term
in parentheses in the equation above), the bias in the regression estimate of β is given by:

β̂
p−→Cov(S0i, b (∑∞

t=0 δ
tπt)S0i + b (∑∞

t=0 δ
t(1− πt)E[Sti|Sti 6= S0i]))

V (S0i)

= b
∞∑
t=0

δt

πt + (1− πt)Corr(S0,E[St|St 6= S0])

√√√√V (E[St|St 6= S0])
V (S0)

 (A5)

This reveals that the parameter estimate β̂ depends on the true parameter b as well as the
magnitude of and confidence in alternative forecasts.

Result 1. The standard Ricardian approach gives a consistent estimate of β (β̂ p−→ β) only if
one or both of the following are true: (1) The market places no probability on the possibility of
change (1−πt = 0) for all t, or (2) the product of the correlation term and ratio of standard
deviations in Equation (22) precisely equals one. Note that in that case β̂ p−→ β ≡ bD.

Both of these conditions seem unlikely in most applications, even in scenarios that intu-
ition from standard OLS indicates should not cause concern. For example, (i) even if the
omitted variable (representing mean alternative beliefs) is orthogonal to the observed (his-
torical) covariate, there could still be bias. There could still be bias (ii) even if there is no
variation in the expected state across space. In both cases, estimates are attenuated.c Just
as with Result 1, there is one important case in which bias does not arise: If beliefs are the
current state plus an additive term that is constant across observations in each period.d

Bias under piecewise linear regression

As in the Section 3.1, assume that the Mean Forecast is a weighted sum of the No Change
index and the Observed Forecast:

Y = ωI + (1− ω)F (A6)

c. If (i) were true, Corr(S0,E[St|St 6= S0]) = 0. If (ii) were true, then V (St) = 0. In either case,
β̂

p−→ b
∑∞

t=0 δ
tπt ≤ bD.

d. In this case, V (E[St|St 6= S0]) = V (S0) and Corr(S0,E[St|St 6= S0]) = 1 in each period, so β̂
p−→

b
∑∞

t=0 δ
t(πt + (1− πt)) = bD and there is no bias.
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Suppose the true model of prices follows a two-segment piecewise linear form in Y :

P = P (Y ) = b1Y + b2Y DY >0 + ε (A7)

where the equation is demeaned and the breakpoint in the linear function has been nor-
malized to zero (this is without loss of generality and facilitates exposition). DY >0 is an
indicator equal to one if Y > 0 and zero else, and ε is uncorrelated with both I and F , and
thus Y .

The naive econometrician does not account for market anticipation, and instead estimates
a two-segment piecewise linear regression model using the same breakpoint, but the wrong
information:

P = bI1I + bI2IDI>0 + u (A8)
Denote the estimates from OLS estimation of this equation as b̃I1 and b̃I2.

To simplify statements about bias, it helps to reframe the problem as one of separate
estimation on several subsets of the data. This breaks the nonlinearity in the forecast that
is implicit in the PLR model, and recasts it as several linear estimation problems. It will be
useful to consider first two derivations:

Lemma 1. Divide observations into the following sets:

S1 = {(Y, I) : Y ≤ 0, I ≤ 0}

S2 = {(Y, I) : Y > 0, I ≤ 0}

S3 = {(Y, I) : Y ≤ 0, I > 0}

S4 = {(Y, I) : Y > 0, I > 0}

Denote the estimated coefficients from running the regression model in equation (3) sep-
arately on each set of data Sk as g̃k for k = 1, 2, 3, 4. Then b̃1 = ṽ1g̃1 + (1 − ṽ1)g̃2 and
b̃2 = ṽ3g̃3 + (1− ṽ3)g̃4 − b̃1, with ṽ1 =

∑
i∈S1

I2
i∑

i∈(S1∪S2) I
2
i

and ṽ3 =
∑

i∈S3
I2

i∑
i∈(S3∪S4) I

2
i

Proof of Lemma 1. First, note that g̃k =
∑

i∈Sk
IiPi∑

i∈Sk
I2

i
, k = 1, 2, 3, 4. Next, note that

b̃1 =
∑

∀i IiPi −
∑

∀i IiDIi>0Pi∑
∀i I

2
i −

∑
∀i I

2
iDIi>0

=
∑
i∈(S1∪S2) IiPi∑
i∈(S1∪S2) I

2
i
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and

b̃2 =
∑

∀i I
2
i ·
∑

∀i IiDIi>0Pi −
∑

∀i I
2
iDIi>0 ·

∑
∀i IiPi∑

∀i I
2
iDIi>0 · (

∑
∀i I

2
i −

∑
∀i I

2
iDIi>0)

=
∑
i∈(S1∪S2) I

2
i ·
∑
i∈(S3∪S4) IiPi −

∑
i∈(S3∪S4) I

2
i ·
∑
i∈(S1∪S2) IiPi∑

i∈(S1∪S2) I
2
i ·
∑
i∈(S3∪S4) I

2
i

It then follows directly that b̃1 = ṽ1g̃1 + (1− ṽ1)g̃2 and b̃2 = ṽ3g̃3 + (1− ṽ3)g̃4 − b̃1.

Lemma 1 essentially shows that for the PLR model, the coefficients that results from
estimating equation (3) are just the variance weighted averages of the coefficients resulting
from running separate regressions on the conditioning set.

Lemma 2. Denote ρI,F |Sk
= E[IiFi|Sk] and σ2

I|Sk
= E[I2

i |Sk]. If Sk 6= ∅ and standard
regularity conditions hold, then the separately estimated regressions coefficients g̃k converge
as follow:

g̃1 →p b1

ω + (1− ω)ρI,F |S1

σ2
I|S1


g̃2 →p (b1 + b2)

ω + (1− ω)ρI,F |S2

σ2
I|S2


g̃3 →p b1

ω + (1− ω)ρI,F |S3

σ2
I|S3


g̃4 →p (b1 + b2)

ω + (1− ω)ρI,F |S4

σ2
I|S4



Proof of Lemma 2. Follows directly from the definitions given and Slutsky’s theorems.

Lemma 2 simply states that, if the estimates from the individual regressions on sets Sk
are available, they converge in probability to the limiting values given above. These useful
statements can be combined to show that the OLS estimates from equation (3) converge in
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value to the following (assuming that no Sk are empty):

b̃1 →p b1 ·
σ2
I|S1

σ2
I|S1

+ σ2
I|S2

ω + (1− ω)ρI,F |S1

σ2
I|S1


+ (b1 + b2) ·

σ2
I|S2

σ2
I|S1

+ σ2
I|S2

ω + (1− ω)ρI,F |S2

σ2
I|S2


b̃1 + b̃2 →p b1 ·

σ2
I|S3

σ2
I|S3

+ σ2
I|S4

ω + (1− ω)ρI,F |S3

σ2
I|S3


+ (b1 + b2) ·

σ2
I|S4

σ2
I|S3

+ σ2
I|S4

ω + (1− ω)ρI,F |S4

σ2
I|S4



Before proceding, it is useful to clarify a particular feature of misinformation using the
PLR model: observations can potentially be misclassified if they are moved across the break-
point. This can be expressed by set membership:
Definition 1. Misclassification occurs if S2 ∪ S3 6= ∅. No misclassification means S2 =
S3 = ∅.

Now, the primary result:
Theorem 1. Under the PLR model with b1 6= b2 6= 0, if market beliefs are a mixture of the
No Change index and the Observed Forecast index, the standard Ricardian approach gives
consistent estimates of b1 and b2 (b̃1

p−→ b1 and b̃2
p−→ b2) if either

the No Change index never misclassifies an observation, and ω = 1; or

the No Change index never misclassifies an observation, and ρI,F |Sk

σ2
I|Sk

= 1 for k = 1, 4.

Proof of Theorem 1. Under no misclassification, estimates of g̃2 and g̃3 are unavailable, and
the misspecified estimates of Equation (3) converge to:

First, no misclassification is necessary condition. Suppose that there is misclassification.
Then S2 ∪ S3 6= ∅ and at least one of g̃2 and g̃3 exists. So one of the three scenarios holds
and follows from Lemmas 1 and 2: (i) if S2 = ∅ and S3 6= ∅:

b̃1 →p b1 ·

ω + (1− ω)ρI,F |S1

σ2
I|S1


b̃1 + b̃2 →p (b1 + b2) ·

ω + (1− ω)ρI,F |S4

σ2
I|S4
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If ω = 1, then b̃j →p bj. Likewise, if all ρI,F |Sk

σ2
I|Sk

= 1 for k = 1, 4, then b̃j →p bj
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Appendix Table 1: Summary Statistics on Farmland Values and Historical Climate Variables  

 
Notes: Sample means and standard deviations for 2,112 
counties in main estimation sample (counties east of 100th 
meridian) in 2007. Discounted indices based on 3% discount 
rate. See the text for more details. 

Mean Std Dev Minimum Maximum

1. Average Farmland Value Per Acre 2,833.7 1,517.7 449.4 20,173.7

2. Historical Climate Variables                                       
Growing Season Mean Temperature 69.1 5.6 55.6 82.9

Winter Temperature 34.9 11.0 7.4 65.4
Spring Temperature 55.2 7.7 38.3 75.0
Summer Temperature 75.1 4.8 63.1 86.3
Fall Temperature 57.2 7.2 39.9 76.8
Winter Precipitation 2.8 1.4 0.4 5.7
Spring Precipitation 3.8 0.9 1.4 5.7
Summer Precipitation 4.1 0.8 2.1 8.2
Fall Precipitation 3.4 0.8 1.2 6.0

3. Discounted Historical Climate Indices                                       
Growing Season Mean Temperature 2,221.7 178.7 1,785.4 2,663.5

Winter Temperature 1,120.1 352.9 239.4 2,100.2
Spring Temperature 1,775.4 246.4 1,230.5 2,410.1
Summer Temperature 2,412.8 153.4 2,026.2 2,773.2
Fall Temperature 1,839.0 230.4 1,281.1 2,468.2
Winter Precipitation 91.1 46.4 13.5 183.4
Spring Precipitation 122.6 28.3 44.8 183.9
Summer Precipitation 131.2 24.4 66.9 264.9
Fall Precipitation 109.2 25.5 38.0 193.8



Appendix Table 2: Estimated Coefficients and Predicted Climate Change Impacts from Forward-Looking Ricardian Regressions in Quadratic 
Seasonal Climate Indices, 2007 Cross-Section 

 

Beliefs based on CCSM 3 A2 Beliefs based on Hadley 3 A2
Parameter (1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

ω 0.50*** (0.15) 0.51* (0.19) 0.33* (0.13) 0.31** (0.11)

Linear winter temperature index -16.53 (11.40) -10.98 (9.69) -26.12* (9.93) -13.87 (9.88)
Linear spring temperature index 32.50 (34.24) -23.04 (20.39) 53.65 (36.18) -11.62 (20.67)
Linear summer temperature index 63.75 (56.94) 58.02 (51.19) -2.70 (50.14) 17.85 (48.56)
Linear fall temperature index 40.86 (56.05) 66.73 (44.86) 80.52 (63.86) 79.99+ (45.97)

Linear winter precipitation index -63.75+ (33.55) -71.82* (35.25) -105.11 (65.47) -127.14* (48.63)
Linear spring precipitation index 76.26* (29.29) 49.55 (30.26) 58.35* (26.13) 39.50 (29.80)
Linear summer precipitation index -120.88*** (28.90) -69.53*** (19.04) -111.58** (39.39) -55.55** (18.78)
Linear fall precipitation index 119.28** (40.94) 86.17* (37.74) 178.32* (85.28) 140.08* (56.32)

Quad winter temperature index 0.24 (0.17) 0.16 (0.14) 0.38* (0.16) 0.23 (0.14)
Quad spring temperature index -0.28 (0.29) 0.21 (0.17) -0.49 (0.30) 0.07 (0.17)
Quad summer temperature index -0.50 (0.34) -0.43 (0.32) -0.07 (0.30) -0.15 (0.30)
Quad fall temperature index -0.31 (0.49) -0.57 (0.39) -0.61 (0.55) -0.67+ (0.37)

Quad winter precipitation index 11.97* (5.51) 11.37* (5.57) 17.85 (0.16) 18.75* (7.18)
Quad spring precipitation index -9.83** (3.42) -5.06 (3.37) -7.33* (0.30) -3.31 (3.02)
Quad summer precipitation index 11.64*** (3.33) 6.70*** (1.94) 9.96* (0.30) 4.88* (1.80)
Quad fall precipitation index -14.15* (6.18) -10.33+ (5.15) -23.27+ (0.55) -18.43* (8.35)

F-statistic on 16 indices
[p-value]

Present Value of Climate Change Impacts
CCSM 3 --- --- -395.7+ (215.3) -707.5* (274.7)

Hadley 3 -403.7+ (249.6) -776.5* (333.6)

State Fixed Effects No Yes No Yes

14.04 13.31 15.72 9.96
[0.000] [0.000] [0.000] [0.000]



Appendix Table 3: Estimated Coefficients and Predicted Climate Change Impacts from Forward-Looking Ricardian Regressions in Binned 
Climate Indices, 2007 Cross-Section 

 

Beliefs based on CCSM 3 A2 Beliefs based on Hadley 3 A2
Parameter (1a) (1b) (1c) (1d) (2a) (2b) (2c) (2d)

ω 0.05 (0.21) 0.37** (0.12) -0.06 (0.14) 0.25** (0.09)

Daily Average Temperature Index:
Number of Days  Less Than 10 °F 1.27 (0.81) -0.56 (0.73) 1.06 (0.70) -0.10 (0.84)
Number of Days  Between 10-19 °F 0.99+ (0.49) 0.95+ (0.54) 0.88* (0.41) 0.33 (0.47)
Number of Days  Between 20-29 °F 1.29* (0.57) 0.07 (0.48) 0.90 (0.63) -0.12 (0.48)
Number of Days  Between 30-39 °F 0.83* (0.33) 0.40 (0.38) 0.41 (0.27) 0.25 (0.40)
Number of Days  Between 40-49 °F 0.64* (0.25) -0.11 (0.26) 0.77* (0.34) -0.07 (0.30)
Number of Days  Between 50-59 °F --- --- --- --- --- --- --- ---
Number of Days  Between 60-69 °F 0.15 (0.58) 0.00 (0.59) 0.26 (0.45) 0.19 (0.56)
Number of Days  Between 70-79 °F 0.83* (0.35) 0.67* (0.27) 0.97** (0.29) 0.72* (0.31)
Number of Days  Between 80-89 °F -0.69+ (0.36) -0.82* (0.39) -0.69* (0.34) -0.93* (0.36)
Number of Days  Greater Than 90 °F -0.13 (0.54) 0.06 (0.61) -0.49 (0.32) -0.11 (0.50)

Annual Precipitation Index:
Annual Precipitation Less Than 24 in -51.28*** (12.96) -40.05** (11.55) -65.49*** (17.27) -39.19** (14.44)
Annual Precipitation Between 24-36 in -10.02 (11.62) -9.42 (8.73) -3.54 (20.48) -1.93 (9.51)
Annual Precipitation Between 36-43 in --- --- --- --- --- --- --- ---
Annual Precipitation Between 43-51 in -2.66 (13.28) -10.82 (8.83) -24.27 (22.11) -16.74 (12.48)
Annual Precipitation Greater Than 51 in 9.24 (10.73) 21.52* (10.40) 1.66 (16.16) 23.71* (11.46)

F-statistic on 13 indices 10.43 11.56 11.03 5.24
[p-value] [0.000] [0.000] [0.000] [0.000]

Present Value of Climate Change Impacts
CCSM 3 --- --- -96.4 (103.9) --- --- -98.4 (125.8)

Hadley 3 --- --- -65.1 (66.2) --- --- -88.4 (78.9)

State Fixed Effects No No Yes Yes No No Yes Yes


