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Abstract

I describe the use of quantitative spatial models (QSMs) to evaluate the effects of transportation
infrastructure with cities. After discussing the motivation for QSMs relative to other economic
measurement techniques, I develop a simple QSM and detail the components that enter into
the model. Next, I consider identification challenges and practical implementation. Finally, I
highlight several shortcomings common in applications of QSMs as well as growth areas where
QSMs show promise for future development.
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Beware of certainty where none exists.

Daniel Patrick Moynihan

1 Introduction

Quantitative spatial models (QSMs) have become a common economic paradigm for evaluating
urban transportation improvements, despite the relative youth of the modeling framework. QSMs
enable researchers to incorporate several margins of adjustment in response to transportation in-
novations and downstream general equilibrium effects. These models represent spatial hetero-
geneity in a somewhat realistic way and so deliver counterfactuals with rich variation in spatial
responses. Moreover, QSMs naturally embed a concept of welfare, making it straightforward to

calculate the benefits of transit and roadways and assess efficacy relative to costs.
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Despite the clear benefits of this paradigm, there is little guidance on how to best use these
models to evaluate the effects of changes in urban transportation or to validate their output. Cur-
rent research varies widely what economic features are modeled, how effects are measured, and
identification and calibration strategies for model parameters. Certainly, the sharpness of the pre-
dictions from any particular model is a strength of this literature. However, this sharpness can
also create the impression of certainty in quantifying the effects of urban transportation projects
when, in fact, conclusions are much less certain.!

This paper has four goals. The first is to broadly survey the various approaches economists
have taken to measure the effects of transportation improvements. I try to highlight the benefits
and shortcomings of each approach relative to QSMs. There is no approach that strictly domi-
nates another in all settings, as differences in data availability, parameter plausibility, or quasi-
experimental variation may rule out certain methods. Careful quantitative and econometric com-
parisons between methods have yet to be exhaustively studied.

I then describe a simple urban QSM that serves as the core to more complex implementations
of QSMs. Third, I discuss how this QSM, and its more complex brethren, can be used to estimate
the impacts of transportation projects. I also take the opportunity to discuss practical implemen-
tation details, identification, and threats thereto. In particular, I note that one common motivation
for using QSMs—that SUTVA is violated and so model-free unbiased treatment effects cannot be
recovered—though technically true, impacts the interpretation of estimands rather than the con-
sistency of parameter estimates. Thus, QSMs should ignore parameter identification at the peril
of the losing coherence with the research environment.

Lastly, I discuss three shortcomings and two areas of promising growth in the current schol-
arship using QSMs to evaluate urban transportation.? First, there is often little validation of how
transit impacts travel flows. It is common for papers to assume that flows to respond to the in-
tervention under study as they do to long-run changes in travel times, instead of testing whether
that is the case. Second, the parameters used in QSMs typically reflect inconsistent temporal or
spatial frames. A particular cause of this is the borrowing of parameters across widely varying
contexts. Not only might parameters be inconsistent with each other, but they may be inconsistent
with particular counterfactuals. Third, there is often little focus on uncertainty in magnitude of ef-
fects. Not only is it common to ignore parameter uncertainty, the QSM literature does not always
fully consider model uncertainty. This last point is of particular concern; because many QSMs can
match observed data perfectly, an unreasonable model can appear to explain the observed spatial
distribution of economic activity.

Turning to two growth areas that will benefit from continued research: The first is better incor-

1. The epigraph for this article is taken from Donald Shoup’s “Truth in Transporation Planning” (Shoup 2003).

2. Because I focus on QSMs, I do not consider very related papers focused on optimal urban transportation policy,
such as Almagro et al. (2024) and Kreindler et al. (2023). Such papers do not embed general equilibrium with location
choice, and so fall outside of the scope of this survey.



poration of heterogeneity (and its concomitant sorting) into the QSM paradigm. Better reflecting
heterogeneity in QSMs allows these models to more sharply engage with the rich social and eco-
nomic tapestries present in cities. However, heterogeneity suggests sorting, and it can be difficult
to interpret the effects of transportation solely through gross commuting flows or changes in prices
when sorting plays a meaningful role. The second is the use of QSMs to isolate non-commuting ef-
fects of transportation infrastructure within cities. Given that infrastructure projects can transform
physical environments, their effects extend beyond merely changing the flows of travelers.

So, what is the researcher who seeks to evaluate urban transportation innovations to do? QSMs
are a powerful and useful tool, and like any tool, it matters how it is used. My hope is to increase
the transparency of both the benefits and shortcomings of QSMs for the study of urban transporta-
tion. My intent is to help bridge the policy evaluation literature as practiced in applied microeco-
nomics with more applied theory approach of QSMs. In that sense, this review should comple-
ment other recent reviews that contemplate transportation evaluation with QSMs.> As such, an
essential reference is Redding and Turner (2015), who combine exposition of a QSM framework to
study transportation costs with discussion of careful causal identification methods. While opin-
ionated, I do not intend for these views to dictate how the literature will proceed. Rather, I hope
researchers, referees, and practitioners find this article useful to collectively continue the process
of developing and improving the credibility of QSM applications.

2 Motivations for and Alternatives to QSMs

There are several ways to measure the value of urban transportation projects. Economists have
typically focused on three methods: hedonic valuation, equilibrium sorting models, and travel de-
mand analysis. QSMs are the newest method, complementing these existing approaches. Collec-
tively, these methods enable researchers to model a wide variety of urban phenomena in response
to transportation interventions.

Hedonic analysis of transportation measures the effects of exposure or proximity to the trans-
portation system on property values. The intellectual tradition for this approach is based on the
capitalization of amenities, such as those provided by transportation access, into property values
in equilibrium. Ceteris paribus, properties with greater transportation access will be priced higher
than those with less, and this difference can be use to understand households” willingness to pay
for transportation access.* While conceptually straightforward, early applications of this approach
often suffered from measurement and endogeneity challenges; it is difficult to separate the benefits

3. Redding (2025) applies the model in Ahlfeldt et al. (2015) to study hypothetical transportation improvements
and compares how successful a market-access only approach is to relative to a full QSM. Donaldson (2025) centers
his review around a sufficient statistics approach framed by the welfare results of Hulten (1978). Although much
of Donaldson (2025) discusses this theoretical framework, there are also enlightening sections on measurements and
causal identification.

4. The capitalization of transportation into housing prices has been studied since at least Spengler (1930).



of transportation access from the many other residential amenities households value. More recent
literature uses quasi-experimental variation in transportation exposure to estimate causal effects
of transportation on property values (e.g., Baum-Snow and Kahn 2000; Billings 2011; Gupta, Van
Nieuwerburgh, and Kontokosta 2022).°

Sorting models instead seek to capture revealed valuation of transportation amenities through
the lens of discrete residential neighborhood choice. Like hedonic analysis, these models note that
location choice embeds transportation access. However, by discretizing the choice space, equilib-
rium sorting models can explicitly model a wide degree of heterogeneity in preferences. Barwick
et al. (2021), Chernoff and Craig (2022), and Mulalic and Rouwendal (2020) are examples of using
equilibrium sorting models to value transportation access and show how these models can reflect
heterogeneity in valuing many residential characteristics, beyond transportation access. Like he-
donic models, equilibrium sorting models can struggle to separate the benefits of transportation
access from other residential amenities, though modern sorting models typically address this by
incorporating workplace and therefore commuting. However, when these models do not ignore
work location, workplace is treated as fixed. As such, sorting models cannot quantify how trans-
portation may shift the spatial distribution of production and consumption.

Although it often shares discrete choice methodology with the sorting paradigm, travel de-
mand analysis has an independent history. Fogel (1964) introduces a social savings approach that
calculates the value of travel time saved from infrastructure, and McFadden (1974) embeds this
into a random utility discrete choice model. In this literature, the focus is typically is on under-
stand agents’ mode choice problem, along with some attention to trip generation and routing.®
As such, the travel demand literature typically recovers estimates reflecting the marginal disutil-
ity of travel time or the marginal value of time. It is less well-equipped to larger scale responses
to transit, such as sorting and development, and is not equipped to model changes in economic
geography. That said, the richness of this modeling tradition means that it is often deployed as a
nest within equilibrium sorting models and within QSMs.

2.1 Motivations for QSMs

Hedonic valuation, equilibrium sorting models, and travel demand analysis are all intellectually
adjacent to modern urban QSMs, but typically have rather different goals. QSMs are well posi-
tioned to model how changes in transportation shift the spatial distribution of economic activity
within a city, inclusive of production (and consumption). While QSMs are often motivated as
overcoming the limitations of other approaches, that is somewhat inaccurate, as QSMs are them-

selves limited in the margins that they can address. Moreover, well executed QSMs are often quite

5. Under some assumptions, these casual estimates can provide information about willingness to pay for and the
welfare effects of transit (Banzhaf 2021). Also see Wong (2018) for an integration of hedonic and discrete choice ap-
proaches that aims at comparability.

6. For a detailed treatment, see Small and Verhoef (2007).



data and parameter hungry, a factor that can limit feasibility. Each approach has value to add, and
they should be seen as complements rather than substitutes.

The motivation for using QSMs to evaluate urban transportation typically falls into one of
three categories. The first is that in an urban economy, residential and production location choices
are determined in spatial equilibrium, which interconnect all places within a city. Through such a
lens, there is no distinction between locations affected by changes in transportation and unaffected
locations. As such, there are no clean control locations, a violation of the Stable Unit Treatment
Value Assumption (SUTVA) (e.g., Angrist, Imbens, and Rubin 1996). When SUTVA is violated,
average treatment effects cannot be consistently estimated from a standard regression model.

A second motivation is welfare analysis. As long as the QSM provides a reasonable first- or
second-order approximation of the relevant economic environment, it naturally provides a mea-
sure of how welfare responds to small- and moderately sized changes in transportation infras-
tructure (e.g., Donaldson 2025). Although the notion of welfare embedded in simple QSMs may
be somewhat unsatisfactory (as it takes the frame of a new resident with no local attachment or
knowledge moving into the city), more nuanced models can incorporate heterogeneous groups,
incumbency, or local attachment (e.g., Chang 2024; Tsivanidis 2025).

The final common motivation is that QSMs can incorporate and reflect a variety of mech-
anisms through which transportation infrastructure could shift urban outcomes. For example,
model counterfactuals can toggle housing supply or labor demand responses to isolate partial
and general equilibrium effects. Or, models can vary the intensity and spatial kernel of spillovers
to understand the role that spillovers play. For example, Tsivanidis (2025) considers counterfac-
tuals that limit externalities, restrict heterogeneity, incorporate congestion, or allow for migration.
The use of QSMs for policy evaluation also allows the potential for assessing the complementarity
or substitutability of different channels.

Although these are the common motivations for the use of QSMs, there are a few other reasons
to employ QSMs in urban settings. First, market access terms may be interesting in and off them-
selves as objects of measurement, in the tradition of Harris (1954). Relatedly, such an approach can
be further developed so as to provide a systematic approach to identification, as Baum-Snow and
Han (2024) do to develop local estimates of housing supply elasticities. Finally, QSMs can also be
viewed as part of data generating process, allowing researchers to fill in missing or unobservable
data based on model predictions (Barjamovic et al. 2019; Heblich, Redding, and Sturm 2020).

3 A Simple Quantitative Spatial Model

The QSM described in this section is used to study the effects of urban transportation in Severen
(2023). It shares many features with—and is readily extensible to—Ahlfeldt et al. (2015), but di-

verges by assuming that land use is exogenous and that there are no agglomeration forces in firm



productivity or residential amenities. Labor and housing markets are otherwise free to respond
according to market forces. I write the model to accommodate a generic notion of “travel costs”

between locations; this can nest sub-models incorporating mode or route choice.”

3.1 Households

Households provide one unit of labor and choose residential location and workplace to maximize
utility subject to income, housing prices, and commuting costs. The choice of utility function
only matters insofar as it effects indirect utility.® The indirect utility of household o residing in
residential location i and working j is:
Uijo = —3=¢ Vijor
i

where W; is the income earned at location j, Q; is the per unit price of housing at i, 1 — { is the
housing expenditure share, and v;j, is household 0’s idiosyncratic preference for location pair #j.”
The term ¢;; measures the travel cost between i and j. Written as such, travel costs nest several
implementations that may themselves feature interesting economic problems, aid identification,
or both.!

The key tractability assumption in QSMs is typically that the v;;, terms are drawn from in-
dependent Fréchet distributions with a common shape parameter, €, and location-specific scale
parameters, A;;. This distributional assumption (like other extreme value distributions) delivers
analytically tractable probability shares that are can be directly connected with data, delivering
the “quantitative” in quantitative spatial modeling.

The shape parameter has several economic interpretations. The first is that € governs how
differently households value otherwise identical locations: for high €, all households value similar
locations similarly, while for low €, households may value similar locations quite differently. It
also serves as the (extensive-margin) elasticity of labor supply. Finally, it also plays the role of the

marginal utility of income. As such, the value of € effectively determines the magnitude of the

7. The baseline model is reasonably well targeted for studying the short- to medium-run effects of urban transporta-
tion innovations in large cities with binding land use regulations. The omission of spillovers means the baseline model
is best interpreted as providing a first-order approximation of the effects of transportation innovations that are rel-
atively small in comparison to the city they are in. Although that (unfortauntely) means the baseline model is well
suited to evaluating most mass transit projects in the United States, it does limit its usefulness for large interventions
or to study long-run effects.

8. This model assumes Cobb-Douglas utility in the consumption of a numeraire good and housing. Richer specifi-
cations may reflect, e.g., non-homothetic preferences (Tsivanidis 2025), household bargaining (Veldsquez 2023), or the
consumption other goods (Miyauchi, Nakajima, and Redding 2021).

9. Here, indirect utility is homogeneous of degree one in wage and households only provide one unit of labor, so I
use wage and income interchangeably.

10. It is common to instead write travel costs as (51.; 1, 1 differ to maintain consistency with the several interpretations
of travel costs in Section 4.



mapping from changes in prices and travel costs to welfare.

The location-specific scale terms can be parameterized in several (often isomorphic) manners.
The following parameterization highlights identification: Let A;; = B;E;D;j, such that the cdf of
vijo is Fij(v) = exp(B;E;D;v~¢). In this parameterization, B; may represent a residential amenity,
E; a workplace amenity (a labor supply shifter), and D;; the average residual utility of each res-
idential and workplace pair.'! Although A;; and its components are typically given names that
evoke a certain interpretation (i.e., amenity), they function as (model) residuals. As such, literal
interpretation of these variable labels warrants caution.

The Fréchet distributional assumption is useful because it generates analytic expressions for

the share of households that choose each location pair ij:

WGQ (1 g)(SEA
Y, Y WeQ, <1 %eArs’

N— 1
<= (1)

TTij
in which N represent the total residents in a city and the number of people commuting between
any pair of locations is Nj; = N7t;;. The denominator of Equation (1) simply sums values across
all possible choices, and as such, recalls the denominator of a multinomial logit estimator. In fact,
similar to the log-sum term for multinomial logit, taking expectations across all location pairs

generates a welfare term:

1/e
V= ]E[m?xvljo = Ye <ZZA“ <W15r5> > , (2)

T

where 7. = I' (¢21) and T is the gamma function.!? This measure reflects a particular notion of
welfare, of someone new to the city, who does not not what their realization of the idiosyncratic
terms, v;j,, will be. Welfare, V, is an index of reflecting the average value of all locations, given the
uncertainty over idiosyncratic preference.

From the household side, all the other variables needed for the model are combinations of
prices, 71;;, and N. The total residential population of i is Ng; = N Y 7t;;. Housing consump-
tion consistent with the indirect utility in this model is (1 — )W;/Q;. Total housing demand
in i combines these two terms to sum demand from households who work in difference places:
(1 - )N X isWs/ Q;. Total labor supply to j is Nw; = N}, 7).

11. Note that A;; could could be written directly into the indirect utility function v;j,, in which case it would appear
in Equation (1) as Af] However, when this term is a residual, rescaling by the shape parameter has little substantive
effect.

12. Technically, € > 1 is necessary for this expectation to exist. However, Equation (1) can be equivalently derived
from a multinomial logit model, in which case the restriction that € > 1 is moot. To see this, consider households with
indirect utility U;; = In A;; + eInW; — €(1 - {) InQ; — €Indjj + ejj,, where ¢;j, is distributed Type 1 extreme value. This
generates choice probabilities exp(U;;) / (¥, s exp(Urs)), which, when evaluated, are identical to Equation (1).



3.2 Production and Housing

Perfectly competitive, atomistic firms use labor and land to produce a globally tradable good
in each location j. These atomistic representative firms produce with a constant-returns-to-scale
production technology that is multiplicatively separable in productivity A;. Thus, aggregating

across firms gives a local production function:
L Tl-anma
Yj = AjLy;" Ny;.

Because firms are measure zero, land use decisions follow profit maximization despite a locally
fixed quantity of land. Perfect competition dictates that firms pay workers their marginal product,

1-a

Measure-zero developers build housing using Cobb-Douglas technology in land and mate-
rials, with productivity that varies by location. Land is owned by absentee landlords. Perfect
competition in the construction industry ensures zero profits, and land is congestible, so greater
density increases prices. Under these conditions, housing supply is H; = (Q;/ Ci)l/ ¥Lg;, where C;

is the inverse of housing productivity. Rearranging yields inverse housing supply:

H\"
Qi=GC <LR1> : (4)

3.3 Equilibrium and Inversion

The model expressed in Equations (1)—(4), along with market clearing conditions in labor markets
(Nwj = NY, ,j) and housing markets (H; = (1 — )N Y, 71;,Ws/Q;) defines a unique equilib-
rium under reasonably mild parametric conditions.!® For convenience, the set of terms A;, C;,
Ajj, and ¢;; are often called fundamentals, but are also model (structural) residuals. The existence
and uniqueness of the equilibrium means that means any non-pathological combination of fun-
damentals maps to a unique matrix of population (with elements 71;) and vectors of prices (with
elements W; and Q;).

A sometimes underappreciated point about QSMs is that much of the difference between in-
dividual papers comes from model inversion. Inversion is the process of showing which fun-
damentals (residuals) can be uniquely recovered conditional on observed data and parameters.
Broadly (and approximately) speaking, a vector of fundamentals can be recovered for each vec-
tor of observed data (with 71;;, or other bilateral matrices, often counting as two vectors). The
model presented here can be inverted to deliver A;, C;, and A;; = B;E;D;; given observed data

13. See Severen (2023) for details.



on wages, housing prices, commuting flows, and travel costs. The commuting flow matrix em-
beds total residential and workplace population, and the four vectors of prices and populations
(wages, housing costs, and the two population vectors from the commuting matrix), along with
the matrices of flows and of travel costs, deliver four vectors and one matrix of fundamentals.!*
However, it is common to reduce the number of dimensions of fundamentals due to data
constraints. For example, Ahlfeldt et al. (2015) do not observe average workplace wages at a
geography directly conformable to the their model, and so cannot separately residuals A; and E;
(they only recover three unique vectors of fundamentals). As another example, Brinkman and
Lin (2024) only observe residential populations, workplace populations, and travel costs, and so
can only recover two unique vectors of fundamentals. In summary, it is difficult to identify more
dimensions of fundamentals (i.e., geographic richness) than there are vectors of observed data.

3.4 Counterfactuals and Welfare

To facilitate expressing counterfactual equilibria, QSMs often rely on exact hat algebra, so called
because X = X'/X for the observed and counterfactual X and X', respectively. For relative
changes in fundamentals, the relative change in welfare from an observed equilibrium to a coun-
terfactual equilibrium can be expressed as

A 1 re A— —G)¢ A
InV = E In <ZZ 7TrsW§Qr e é:)(Srs/\rs> . (5)
r s

This expression makes clear that the shape parameter governing the distribution of idiosyncratic
preferences over locations equally serves as the marginally utility of income (cf. Train 2009).

To simulate a counterfactual equilibrium, it is sufficient to iterate over the following system of
equations until convergence:

fij = 1 g (6)
Zr Zs nrswegr 56 A
AT AL Zr nrinri ot
W, = 4, (zr i 7)
P/ (1+)
Q /(1+9) Zs Tlis 7'[st Ws (8)
Zs 7Tis Wi .

Note that € and the denominator of Equation (6) together can then be used to calculate welfare, as

14. Allen and Arkolakis (2025) note that a very simple economic geography model can be written as the linear system
Ax = Tx and Ay = T'y, where x and y are prices and populations, A is the scale of welfare, and T is a matrix of
fundamentals. This makes plain the notion that QSMs ‘rotate” fundamentals into prices and population and vice versa.
For simple models, the rotation is linear, although that typically does not hold in more complex models.



per Equation (5).

This model is of a closed city: the population is fixed and agents can only choose locations
within the city. This has the important implication that welfare may change in response to trans-
portation infrastructure. In contrast, a fully open city faces a perfectly elastic supply of popula-
tion, and so the response to changes in travel costs is to alter the size of the city without impacting
welfare. An intermediate assumption is possible, nesting a migration decision (often defined in
terms of a separate idiosyncratic extreme value term) between the expected value of city residence

expressed in Equation 2 and a rest-of-country option.

3.5 Endogenizing Travel Times

This model assumes that travel times are determined exogenously. However, a variety of factors
can shift travel times, and these factors are likely to respond to changes in transportation infras-
tructure. Two leading examples are congestion and private transit provision.

There are several ways to incorporate congestion into the QSM framework. The most straight-
forward is to directly parameterize travel times as a function of the quantity of people that travel
a location to a destination. However, such an approach misses the effects of funneling flows onto
particular roads regardless of the origin and destination. In contrast, Herzog (2024) carefully cu-
mulates traffic along fixed routes to approximate the total traffic load that a commuter encounters
between their residence and workplace in order to understand how traffic changes in response
to a congestion charge cordon. Somewhat more simply, Severen (2023) estimates the relationship
between transit and changes in automobile congestion by regressing changes in travel times on
the share of a the fastest route between two locations that is exposed to newly constructed rapid
transit (i.e., lies within a corridor around transit).

As an alternative to methods that fix routes, it is possible to endogenize route choice. Allen and
Arkolakis (2022) implement a route choice problem that is nested with the standard QSM frame-
work. Agents receive idiosyncratic preference shocks for routes, and so route selection becomes a
probabilistic function of travel times and preferences. With these probabilities, the expected traffic
on any segment can be calculated, and then its contribution to congestion estimated or calibrated.
By permitting infinitely long routes, this distributional assumption delivers tractable matrix ex-
pressions that reflect congestion. Estimates typically suggest a high degree of substitutability be-
tween routes (Allen and Arkolakis 2022; Hwang 2024). However, a conceptual challenge with this
framework is that it does not always accord with how people select routes, wherein they typically
consider a much smaller choice set of candidate routes.

Another motivation for endogenizing travel time is to study the supply of transportation. Bor-
deu (2024) extends the Allen and Arkolakis (2022) framework by allowing fragmented govern-
ments within a city to decide how much roadway to provide, this impacting congestion. Because

congestion spills over beyond municipal borders, roadways are underprovided, particularly near

10



the edges of municipalities. Endogenizing transportation supply is particularly vital when infras-
tructure is less durable. For example, formal public rapid transit systems provide networks that
are relatively fixed and durable, while the informal private transit provision common in much
of the world can evolve much more quickly and fluidly. These systems endogenously provide
transit as bundles of travel times and prices by varying routes and waiting times. Conwell (2023)
considers the incentives to provide high quality travel services of associations of private transit
providers. Indeed, these two papers demonstrate that QSMs are useful to learn about the supply

of transportation as much as about the demand for transportation.

4 Measuring the Consequences of Urban Transportation

I next discuss using the model to quantify the effects of urban transportation. I focus first on
measurement in the gravity (commuting) portion of the model, before shifting transportation’s
possible effects on other fundamentals.

4.1 Measuring Commuting Effects

Taking logs and rearranging Equation (1) yields:

in(Ny) = In() —eln (- ) +n (QFV8) + In(WEE)) + €ln(ay) + In(Dy),

€

Defining 6; = ln(Qf(g_l)Bi), wj = In(WFE;), go = In(N) —eln (%), and interpreting d;; = In(Dj;)

as a residual, this becomes
ln(Nz-/-) =g0+0;+ w;j + €ln (51']' + di]'. 9)

The commuting model thus delivers a tractable empirical estimating equation that depends on
travel costs (4;;), fixed effects (which may subsume the constant g), and an error term.
Measuring how transportation impacts commuting can be accomplished in several ways. The
most common approach is to calculate travel times and use those directly to fit the location choice
model. Alternatives include embedding a sub-model of mode choice or to directly a measure
of exposure, proximity or treatment. Each approach has merits, which I detail below. To unify

notation, define

_KTij

e for travel time with a single mode
bij = § L, e"n(=KTim) for travel times with multiple modes
ePTij for direct measure of treatment (exposure) to transit,

11



where 7;; is the travel time from i to j, x is the marginal utility of travel time, T, is the mode-m

specific travel time from i to j, and T; is a direct measure of exposure or treatment.

4.1.1 From Travel Times with a Single Mode

Modern routing engines allow researchers to rapidly calculate travel times, 7;;, under a wide vari-
ety of infrastructure and use scenarios. This lets the researcher easily obtain bilateral travel times
based on the contemporaneous observed transportation network (e.g., Akbar et al. 2023). Using
these travel times and substituting ¢;; = exp(xT;;) into Equation (9) yields:

ln(Ni]-) =g0+0;+ wj — €KTjj + dl] (10)

Travel times directly enter Equation (10), and under conditional exogeneity, this equation recovers

15 However, there is insufficient variation

consistent estimates of the compound parameter ex.
in Equation (10) to separately identify these two parameters. To separate these parameters, the
researcher must either make an assumption about the value of either « or €, or employ additional
variation.

There are a few additional challenges. First, researchers faces several degrees of freedom in
the sampling process. They must determine whether to use a single point (typically the centroid)
per geographical unit, or to sample multiple points.16 They must also decide when in the day
to sample travel times, as different times in the day may reflect different levels of congestion.
Validation against experienced travel times is useful, but requires survey, GPS, or road-monitoring

data. These choices all impact the interpretation of ex.

4.1.2 From Travel Times with Multiple Modes

Alternatively, a mode choice sub-model can be used to capture travel costs and estimate x. The
traveler can choose mode m from a set of modes, each of which has travel time T7;;,,. Assume that,
conditional on choosing route ij, the traveler faces Unolij = Mm — KTijm + Eijmo, with &;,, being
idiosyncratic preferences distributed Type 1 Extreme Value. Then, the expected (or inclusive)

value of the mode choice sub-model is captured by

lij = Eo[max U] = In <Zexp(ym — KTi]'m)> .

15. It is common for urban gravity (e.g., Equation 10) to be expressed as a function of linear travel time, whereas
models of trade typically employ log travel time or distance.

16. Some care should be taken in this stage; e.g., some centroids may lie in inaccessible locations. Special care should
be paid at calculating the time from i to 7; these are unlikely to be zero. Researchers can sample multiple points, include
an additional indicator and parameter ex'°@!1[i = j], include the average distance from the centroid to the edge as a
control, or the root of area.

12



Substituting this expression into Equation (9) gives:
ln(Ni]') =g0+0;+ wj + 611‘]' + dz']'. (11)

This model is similar to Equation (10), but has one key difference. The marginal disutility of travel
time, «, is estimated using variation travel times across modes. This source of variation conditions
on ij, but is otherwise independent from the selection of origin and destination. Thus, estimates
of € can be obtained from directly from Equation (11) (under conditional exogeneity).

The mode choice sub-model is typically estimated independently or as an early recursive step.
Implicitly, this assumes recursive decision making by the agent: While uncertain about ¢;j,,, the
agent chooses where to live and work. Then, they realize their idiosyncratic mode preference and
choose the mode that maximizes their utility conditional on i and j. The sub-model model could
be even richer, such as featuring nested mode decisions (as in Tsivanidis 2025) or routing decisions
(as in Allen and Arkolakis 2022)."7

4.1.3 Directly from Treatment

Alternatively, In(J;;) can directly measure exposure to infrastructure. For example, let In(J;;) =
Bg(ds(i),ds(j)) = BT measure the proximity of i and j to transit (i.e., where d,(x) is the distance
from x to the nearest transportation station, 5).18 Under this assumption, substituting into Equa-
tion (9) gives:

In(Njj) = go +6; + w; + eETij + djj. (12)

As in the case of the single mode model, Equation (12) only recovers the compound parameter €.
However, a benefit of this model is that it may be possible to interpret § = —ef as a treatment
effect (or as proportional to the treatment effect; see Section 5.1). Again, a sufficient requirement
for identification is conditional exogeneity.

The primary benefit of this approach is that it directly measures the response of commuting
flows to transportation infrastructure. In contrast, the other approaches infer the changes in com-
muting flows from changes in times in conjunction with other parameters. This implicitly assumes
that commuting flows respond to the changes induced by the transportation infrastructure under
study in precisely the same way they do to all other changes in travel times. In practice, this may
or may not be a reasonable assumption; see the discussion in Section 6.

17. Allen, Fuchs, and Wong (2025) build on Fuchs and Wong (2024) and develop an alternative way of incorporating
multi-modal travel.

18. Unlike typical measures of treatment based on a single distance, this measure should explicitly capture proximity
of both i and of j to the transportation improvement. Thus, it may impose some symmetry of treatment on origins and
destinations.
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4.2 Measuring Non-Commuting Effects

Transportation infrastructure can also directly impact non-commuting fundamentals, like produc-
tivity or amenities, or be accompanied by policies that impact such fundamentals.

Viewed through the lens of the QSM, changes in prices and quantities are endogenous to
changes in transportation infrastructure. Accordingly, model-consistent methods of measuring
non-commuting impacts seek to recover the effects of transportation infrastructure on the funda-
mentals embedded in the QSM, i.e., the terms {A;, B;, C;, E;}. To make this plain, taking logs of
Equation (3), Equation (4), and the fixed effects in Equation (9) gives the linear system:

Labor demand: In(W;)= (¢ — 1) In(Nw;) + (1 — a) In(Lw;) + In(A;)
Labor supply: w; = eIln(W;) +In(E;)
Housing demand: 0, =e€(l—1)In(Q;) + In(B;)
Housing supply: In(Q;)= ¢ In(H;) — pIn(Lg;) + In(C)),

where constant terms have been omitted.!® The fundamentals are clearly playing the role of em-
pirical residuals in this system of equations.

This system, along with Equation (9) and the market clearing conditions, fully describes the
urban economy. Because this model is uniquely invertible, the fundamentals are calculable from
observed data and the parameter vector {«,¢€,(, }. With these fundamentals in hand and some
measure of exposure, proximity, or treatment at each location i, denoted T;, it is possible to estimate
auxiliary models, like:

Y; = AT; + u;, (13)

where Y; = {In(4;),In(B;),In(C;),In(E;)} are the fundamentals recovered above, A = {A4, AB, A€, AF}
estimate the impacts of T;, and u; = {a;,b;, ¢;, ¢;} are residuals of the auxiliary regression. Some-
times, {In(A;),In(B;),In(C;),In(E;)} are deemed endogenous fundamentals and {a;, b;, c;, e;} ex-
ogenous fundamentals. Alternatively, T; could be a more flexible function of other endogenous

variables. As such, this representation is conformable to agglomerative spillover terms, such as
those in Ahlfeldt et al. (2015).

5 Interpretation, Identification, and Practical Details

I next address common issues that face researchers trying to implement or understand the use of
QSMs when studying urban transportation.

19. Note that the land use terms are present in this system, even though they are taken as exogenous in the baseline
model.
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5.1 Interpreting Parameters in QSMs

A key motivation for evaluating urban transportation with QSMs are the transportation treat-
ments (i) may directly impact many, or even all, of the locations within a city, and/or (ii) may
indirectly alter outcomes across a city via general equilibrium effects. Both motivations lead
to violations of SUTVA, rendering parameter estimates based on quasi-experimental techniques
unidentified. These concerns certaintly have the potential to complicate identification, but there is
a lack of clarity about the circumstances under which each concern is valid.?

5.1.1 SUTVA Violations and Parameter Labels in Partial Equilibrium

Equation (9), by definition, violates SUTVA. In a potential outcomes framework, SUTVA requires
that changes in the value of treatment for one observational unit do not directly impact the po-
tential outcomes of another unit. The constant go in Equation (9) implicitly embeds the expected
utility term V, which itself depends on the entire matrix dij. Thus, shifting J;; impacts the value of
Nyj fori,j # i, ] (through o). If SUTVA is violated, the parameters {«, €, x, ¢, {} do not represent
elasticities or semi-elasticities and B = € in Equation (12) no longer represents a treatment effect.

However, SUTVA violations do not impact whether these coefficients can be consistently esti-
mated. Moreover, these parameters are still informative about partial equilibrium elasticities and
treatment effects. Consider Equation (10) (which maintains the assumption of extreme-value id-
iosyncratic preferences). Although ex appears to represent the semi-elasticity of commuting flows

with respect to travel times, straightforward derivation reveals that, in partial equilibrium,

d h’l(Nl])
dTi]'

N;j
= —ex(1—m;) = —ex (1— =L ).
ex(1 — ;) GK( N)

Similarly, consider Equation (12) with a discrete treatment T;; € {0,1}. Let N;;(T;;) be the counter-
factual value Nj; as a function of treatment Tj;, and let = ef. Then, in partial equilibrium,

ln (Nz](l)) — 11’1 (Nl](O)) = ﬁ—l—ln (1 + I\]i;él)(e_ﬁ — 1)) ~ :B <1 — sz%(]l)> .

In both of these instances, the (semi-)elasticity or treatment effect is simply scaled by the fraction
of the population that chooses each location. True partial equilibrium treatment effects and elas-
ticities can be calculated by taken averages across ij. However, because 71;; is often quite small,
the true effects or elasticities will typically be close to the parameter values themselves. Given

this, the shorthand practice of referring to these parameters as elasticities or treatment effects is

20. For example, Diamond and Serrato (2025) notes that a logit-type location choice model violates SUTVA, and so the
choice probabilities for locations should be differenced. This resolves the SUTVA violation by changing the outcome
being modeled (i.e., to the log difference in the likelihood of choosing one place relative to another). It does not,
however, change the point estimate of the parameter value, which can be consistently estimated without differencing.
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not unreasonable, as long as careful analysis preserves the distinction.

5.1.2 Moving from Partial to General Equilibrium

The above distinction between parameters and treatments or elasticities is mainly semantic in
partial equilibrium, but becomes more substantive when general equilibrium forces are allowed

. RS . . . ,
or suspected to operate. In partial equilibrium, a change in travel times, say from 7; to 7,
impacts flows directly; it does not propagate through price changes. In general equilibrium, how-

only

ever, it does propagate, and so the shift in In(Nj;) changes wages and housing prices, which then
cause further changes in populations, etc. Consistent parameter estimation with general equi-
librium forces typically requires some additional exogenous variation, often in the form of an
instrumental variable.

The notion of an elasticity or treatment effect in general equilibrium may still be valid, but
must rely on the model’s structure to evaluate. In fact, this is an interesting area for investigation.
Monte, Redding, and Rossi-Hansberg (2018) estimate heterogeneous county-level labor supply
elasticities reflecting differences in nearby geography and populations, despite a single param-
eter corresponding to the household’s labor supply. Relatedly, Baum-Snow and Han (2024) use
variation partially induced by differential economic geography to estimate local-area elasticities
of housing supply.

5.2 Identifying Commuting Effects and Practical Estimation Details

I now touch on factors that impact the identification and estimation of the gravity (commuting)
equation, as these tend to be somewhat distinct from identification of other parameters (which
typically reflect more common identification in labor, urban, and housing economics). The gravity
equation hosts the primary parameters that govern how transportation impacts commuting, so
identifying these parameters is necessary for a causal interpretation of gravity. Fortunately, the
gravity models in Equations (9)-(12) can be accommodate panel data, instrumental variables, or
both. This suggests several approaches for identifying effects, with many papers opting for several
designs to build confidence in the robustness of estimates.

The panel gravity model conditions on time-invariant residential location-by-workplace fixed
effects, in addition to residential location-by-time and workplace-by-time fixed effects (which ab-
sorb the period-specific intercept, got, in estimation):

ln(Ni]'t) = got + 0 + Wi + Mij + €ln 51‘jt + dijt- (14)

Location pair fixed effects, yi;j, control for confounding factors specific to ij that determine flow
and do not change during the sample. Some examples include persistent workplace-residential

sorting, consistent unmodeled congestion or transit, or commuter preferences for unobserved but
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complementary characteristics between work and residential locations.?!

This enables using difference-in-difference or staggered-adoption designs to identify trans-
portation effects, as in Gaduh, Gra¢ner, and Rothenberg (2022). The credibility of these approaches
depend on whether untreated location pairs can serve as plausible controls for treated location
pairs. The reasonableness of this identifying assumption varies substantially across settings. How-
ever, even without outside information to refine identification, panel gravity settings offer their
own refinements that may plausibly aid identification. Because of the dyadic structure of Equa-
tion (9), a particularly relevant control set are units common to treated pairs, but not both treated.
For a treated pair ij, the set of pairs i’j and ij’ for i # i’ and j # j' are particularly likely to re-
flect some similar counterfactual evolution of commuting patterns. This common units approach is
implemented in Severen (2023).

Planned but unbuilt, partially built, or not yet built networks offer an alternative set of control
pairs. Location pairs lying along planned routes may be or have been particularly likely to have
been treated, yet were not (or were not yet) treated. Several papers adopt this approach. Tsivanidis
(2025) uses planned but unbuilt lines to define a control group in Bogotd, while Zarate (2023) uses
a not yet built line to create a placebo for a line that was built in Mexico City. Severen (2023) uses
a historical planned subway network from the 1920s to develop an additional plausible control
group for Los Angeles” subway build out, which began to open in the 1990s.

The gravity model can also accommodate an instrumental variables approach to address omit-
ted variable bias. It is common to instrument travel time with distance, though the credibility of
this approach depends on the particular research setting. More promising are the use of incon-
sequential units designs, wherein treatment can be instrument by whether a route lies along the
lines connecting two important locations. Tsivanidis (2025) uses a least-cost routing algorithm to
develop an instrument for bus rapid transit routes that prioritize connecting transit portals to the
urban core. Tyndall (2021) notes that many cities prioritize connecting airports to their cores and
uses this to develop an inconsequential units-type instrument (cf. Redding and Turner 2015).

Several papers propose using historical urban transportation networks as instruments, as op-
posed to developing a refined control group. The validity of exclusion restrictions based on a
historical network effectively limits any independent role of persistence in urban form. For ex-
ample, Brooks and Lutz (2019) find that locations historically served by tramways are still denser
than nearby locations that were not. If the density or character of these locations has an indepen-
dent influence on commuting patterns outside of how it impacts current transportation systems,
then the exclusion restriction is violated.

21. However, p;; also absorbs time-invariant factors for which the researcher may want to estimate effects, such as
distance or travel time (when only a single cross-section of travel times are available).
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5.2.1 Practical Issues for Gravity (Commuting) Estimation

Consider Equation (9) and its descendants in Equations (10)~(12). A first concern is that In(Nj;) is
undefined if N;; = 0. If this is true for any ij, then estimation using the full sample is infeasible and
estimation using ordinary least squares (OLS) on flows with N;; > 0 generates bias by selecting
the sample based on the outcome. This can be overcome through the use of the Poisson pseudo-

maximum likelihood (PPML) estimator, which posits the relationship:
]E[Nl]] = exp(@i +w;+ eln 51']'), (15)

where the expectation is over the error in ij flows. Importantly, the PPML estimator delivers con-
sistent estimates even if the distributional assumption is incorrect, much like OLS.?? This means
that even if Nj; is scaled so as to contain non-integer values, PPML will continue to provide con-
sistent estimates when correctly specified.?

Second, there may be substantial granularity if units are at a small level of disaggregation,
with Nj; predominately taking the value of small non-negative integers. For estimating models
like Equation (9), this may just inflate standard errors. However, granularity can play a much
more substantial role in simultating model equilibria, and thus can drive substantial variaiton in
counterfactual estimation (Dingel and Tintelnot 2025).

Sotelo (2019) notes another, subtle issue. There are alternative ways to write Equation (9) as
conditional shares, e.g., 7;

or 7;;. Doing so can remove the need to include one dimension of

jli ijlj-
tixed effects. However, this also reweights the contribution of each ij pair, such that the weights

are equal for the flows across the conditioned upon dimension.

6 Shortcomings and Opportunities

I next summarize three common shortcomings in how QSMs are implemented when studying
transportation. These critiques tend to be interrelated, and although they are targeted primar-
ily at transportation settings, they may apply more generally to the implementation of QSMs in
other contexts. I then turn to two areas of exciting research growth that retain opportunities for
continued discovery.

22. Bellégo, Benatia, and Pape (2022) propose another solution to the so-called “log of zero” problem (Silva and
Tenreyro 2006).

23. In panel gravity applications with several periods and staggered treatment adoption, traditional estimators may
estimate biased treatment effects due to contamination (e.g., Goodman-Bacon 2021). Nagengast and Yotov (2025) con-
sider how to address heterogeneous treatment effects with staggered treatment adoption using the PPML estimator.
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6.1 Validating Effects on Flows

Researchers do not always validate the causal link from transportation infrastructure to commut-
ing flows. Instead, as discussed in Section 4.1, a common approach is to (i) estimate the marginal
disutility of travel time from a cross-sectional gravity model or borrow an estimate from another
setting, then (ii) combine that estimate with simulations of the changes in travel time induced by
a transportation intervention.

This implicitly makes two strong assumptions. First, it presumes that commuters respond
to the changes in travel time induced by treatment as they would any other change in travel
time. This may or may not be reasonable, and depends substantially on the type of transportation
infrastructure being studied. It rules out an behavioral or unmodeled changes in travel behavior.
If, as is common, the travel time between two locations is taken as the minimum or average of
times across all modes, this implicitly ignores differences in the disutility of travel time across
mode and differences the average utility or accessibility of each mode. That is, it may not be
reasonable to equate the marginal disutility of travel time for car travel, for walking, and for rapid
transit. Moreover, if changes in travel time are instrumented, a similar observation applies to the
local average treatment effect. The changes in travel time induced by the instrument may, or may
not, represent a broader average marginal disutility of travel time.

Second, this approach assumes that in the way that people respond to changes in travel time is
invariant the temporal scale under study. In fact, this elasticity (or semi-elasticity) must always be
in reference some time frame over which reaction can occur. If a commuter’s travel time increases
by 30 or 60 minutes, they are unlikely to respond by changing their residence and workplaces the
next day. In fact, such responses can take a rather long time to play out.

A leading alternative is to directly estimate the effects of (some measure of) treatment on flows.
For example, with panel data on commuting flows, it may be credible to interpret as a causal
average treatment effect estimated by regressing flows on (changes in) proximity to treatment.
This is the approach of Gaduh, Gra¢ner, and Rothenberg (2022), who find a minimal direct effect of
bus rapid transit on commuting flows in Jakarta. Severen (2023) also follows this direct approach,
but finds a substantial direct effect of subway and light rail on commuting flows in Los Angeles.
Tyndall (2025) directly estimates the effects of ferry connections in New York City using a panel

gravity model.

6.2 Parameters Reflect Inconsistent Temporal or Spatial Variation

QSMs rely on many parameters and, much like the witches” brew in Shakespeare’s Macbeth, these
parameter are often pieced together from various sources. As such, they may reflect behaviors at

inconsistent temporal or spatial scales.?* Economists have long been familiar with the idea that

24. In Shakespeare’s Macbeth, the witches’ brew is a jarring amalgamation of ingredients that seem at odds with each
other (fillet of snake, wool of bat, howlet’s wing, scale of dragon, and root of hemlock, among others). The purpose of
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responses are more elastic in the long run than in the short run (e.g., Samuelson 1947; Milgrom
and Roberts 1996). The short-run parameters estimated from a shock to transit provision (as in
Anderson 2014), reflect a very different shock and temporal scale than those used to estimate
labor or housing supply elasticities. Similarly, parameters estimated at one spatial scale may not
port to another scale. To wit, if the shape parameter governing the dispersion of idiosyncratic
preferences over residential locations is estimated from tract-level variation in Berlin, it is unclear
that it is also reasonable to use that parameter to study county-level residence choice in the United
States.”

One particular case where this can occur is using, in the same model, a travel time disutility es-
timated from a cross-section of flows with other elasticities estimated from temporally-motivated
shocks. The travel time disutility in this setting is best thought of as the long-run response to
travel times. Other parameters, such as labor or housing supply and demand elasticities, are often
estimated from annual or decadal variation. Perhaps such a time frame sufficiently approximates
the long-run, perhaps not. Regardless, this matter is rarely discussed, even though it can play an
important role in counterfactual estimation.

It is likely that the borrowing of parameters across research settings and paper exacerbates ill
effects of this witches” brew. However, in many settings, there may be little alternative. Though
relatively parsimonious, QSMs still require a vector of parameters, many of which cannot be cred-
ibly identified in every single setting. In such cases, extensive testing of the sensitivity of model
results and counterfactuals to alternative vectors is essential for the credibility of quantitative re-
sults. Given that these are quantitative spatial models, this would seem more essential than current
practice often demonstrates.

Very tightly entwined with this issue is that parameters in QSMs often serve multiple roles,
and thus wear many hats.?® This can be both a feature and lead to challenges. For example,
in the model presented in Section 3, the shape parameter ¢ is the elasticity of labor supply and
the marginal utility of income, while also controlling the distribution of idiosyncratic preferences
across locations and scaling the elasticity of housing demand (with respect to location). This em-
barrassment of riches in interpretation suggests many ways to calibrate or estimate the parameter.
However, if these different interpretations suggest different parameter values, it may not be clear
how best to proceed.

this brew is provide the protagonist with false visions and give a dangerous and unfounded sense of security of the
future. This false information guides him to making rash decisions and commiting rather unreasonable actions.

25. As such, this is related to the modifiable areal unit problem (MAUP) in spatial statistics.

26. The transportation-obsessed titular character in Eastman’s classic Go, Dog. Go! also tries on many hats, although
with the goal of impressing guests at various social functions. Often, the hats are somewhat outlandish given the
context of the event (Eastman 1961).
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6.3 Parameter, Counterfactual, and Model Uncertainty

Relatedly, many QSM implementations offer little quantification of uncertainty when evaluating
counterfactuals. There are two concerning sources of uncertainty. The first is uncertainty over
the magnitude of model parameters. Even if parameters are borrowed from other sources or
calibrated, using only the point estimate to simulate model counterfactuals may suppress the often
significant uncertainty over parameter values. In models with many parameters, correlation in
the uncertainty over these parameters may lead to substantial differences in model performance.
Ideally, sensitivity analysis should span the plausible subset of vector space covered by these
parameters, though in practice this is unlikely feasible.”” Bayesian methods may offer guidance.

Policy conclusions, such as addressing the cost effectiveness of historical transportation in-
frastructure, may shift once uncertainty is accounted for. Perhaps of even more concern, model
behavior can change within the confidence region covered by model estimates. For example, the
model in Allen and Donaldson (2020) exhibits a single steady state when evaluated at the point
estimates for its spillover parameters, but when these spillover values are increased to the edge of
their confidence region, the model exhibits multiple steady states.

Moreover, there may be substantial model uncertainty. Although this is not unique to QSMs,
the wide menu of choices that can be selected when constructing a QSM suggest that the researcher
has a substantial degree of freedom. This is an embarrassment of riches, but highlights that the
QSM enterprise would be well serve by placing more emphasis on model validation. Relatedly,
a typical feature of QSMs is that they often perfectly rationalize the data used for quantification
(more specifically, the fundamentals recovered from inversion perfectly reflect the data used for
the inversion). This suggests that, in many cases, even an unreasonable model will provide an
excellent fit of the data.

There are a few techniques researchers can draw on to boost confidence in the model and its
implementation. One approach that would aid the credibility of these models is to report model
assumptions (or ranges of parameters) that alter broad qualitative model conclusions. Knowing
what in a model invalidates a conclusion is tantamount to knowing how the model recovers that
result. In contrast, if every alternative modeling assumption and set of parameter values neces-
sarily generates the same conclusion, then this conclusion is tautological with respect the model
and thus unhelpful for distinguishing various narratives for how the world works. A second ap-
proach is report how the model performs at matching moments of the data that are untargeted in
estimation or inversion. Of course, a researcher has a significant amount of freedom in choosing

untargeted moments, and so should avoid cherry-picking.?®

27. Appropriately addressing uncertainty in dyadic models is not trivial, and applications of available methods (e.g.,
Graham 2020) not widespread.

28. The set of quantitative tools available to validate structural models growing (e.g., Andrews, Gentzkow, and
Shapiro 2020; Adao, Costinot, and Donaldson 2025).
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6.4 Incorporating Heterogeneity (and Concomitant Sorting)

Standard QSM implementations feature agents that are identical (up to an idiosyncratic prefer-
ence shock). This model can be extended by have multiple discrete types of agents that are distin-
guished by a pre-determined characteristic. Unfortunately, commuting data often do not reflect
such differences, and an active area of development focuses on incorporating such differences into
QSMs. Using cell phone, Kreindler and Miyauchi (2023) propose two methods of mapping flows
to skill heterogeneity based on the skill share at a residential location. However, a central chal-
lenge of such methods is that determinants of commuting probabilities do not retain attractive
analytic formulae when aggregated (Redding and Weinstein 2019).

If the distribution of skill (or other characteristics) at residence and at work are separately ob-
servable, and commuting behavior can be modeled separately by group (such as in travel survey
microdata), analysis can proceed without aggregating across types. Tsivanidis (2025) builds a full
panel QSM based on such an insight. This model reflects the varied and non-homothetic prefer-
ences of higher- and lower-skill workers across locations, travel times and modes, and housing
prices, and incorporates endogenous amenities and productivity.

However, QSMs have so far avoided more general forms of heterogeneity, generally falling
short of the richness captured in residential sorting models (e.g., Almagro and Dominguez-lino
2025). A first order concerns is that locations may have more heterogeneity in substitution patterns
than permitted by the distributional assumptions underlying QSMs. Households likely only con-
sider a few neighborhoods when deciding where to live (Piazzesi, Schneider, and Stroebel 2020).
There is also much unmodeled sorting by sector and occupation into workplaces. Some of this
can be addressed by nesting groups of neighborhoods together, as in Alves, Burton, and Fleitas
(2025), though it is unclear ex ante how best to group neighborhoods in general.

A particular challenge emerges as a logical consequence of ex ante heterogeneity: sorting.
People may move to take advantage of transportation infrastructure. When this on the basis of
observable differences, QSMs accompanied by sufficiently detailed data are well positioned to
analyze effects. However, when sorting takes place on the basis of unobservable heterogeneity,
it is more challenging to address. Indeed, in the limit, where every agent is ex ante different,
fully incorporating sorting is impossible without panel data. And panel data that follow agents
at spatial granularity sufficient for within city analysis are rare. However, Warnes (2024) obtains
such data for Buenos Aires, and is thus able to model how households respond to the introduction
of bus rapid transit while accounting for moving frictions. As a warning about the importance
of sorting, Balboni et al. (2025) show that controlling linearly for only observable demographic

factors does relatively little to address sorting.
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6.5 Non-Commuting Effects of Transportation

With the possible exception of congestion, the primary response considered in studies of urban
transportation is commuting behavior. This is typically due to the availability of data, but also
reflects the fact that visiting a work location daily lends that location particular import. However,
there are many other margins that urban transportation can influence. The literature considering
these alternative margins is rapidly expanding, to the great benefit of researchers and policymak-
ers.”

In addition to providing access to work, transportation also provides access to consumption
opportunities. Miyauchi, Nakajima, and Redding (2021) incorporate both consumption travel and
trip chaining into the QSM framework to study consumption patterns in greater Tokyo, and find
that excluding consumption travel leads to undervaluing the effects of improved transit. Com-
bining travel card data from Singapore with variation in a subway line opening, Lee and Tan
(2024) also consider consumption travel and show that ignoring consumption travel dramatically
understates heterogeneity in the effects of the subway expansion across income groups.

Not only does consumption access appear to play a substantial role, so does variation in desti-
nations for members within a household. Veldsquez (2023) develops a QSM in which some house-
holds have multiple workers. These workers have heterogeneous preferences for commuting, as
may be due to different (gendered) roles within the household (e.g., Le Barbanchon, Rathelot, and
Roulet 2021; Liu and Su 2024). Residential location choice thus balances these differing prefer-
ences (or expectations). Similarly, Pietrabissa (2023) builds a model that reflects parents” trade offs
between work access for themselves and schools for their children.

Several studies incorporate the effects of highway infrastructure on non-commuting funda-
mentals, and in particular, on residential amenities {B;}. Brinkman and Lin (2024) demonstrate
that highways reduce nearby residential amenities; that is, highways cause B; to decline for i near
the highway. These disamenities interact with and can exacerbate racial differences (Bagagli 2025;
Weiwu 2025). Given the substantial impact that infrastructure can have on the the built environ-
ment, this type of research seems particularly important for understanding urban dynamics.

The sorting and segregation studied in Bagagli (2025) and Weiwu (2025) represents an endoge-
nous neighborhood amenity, the local residential composition. Although those studies focus on
race, the education mix of a neighborhood can play a role in neighborhood evolution. Tsivanidis
(2025) incorporates heterogeneous types by education, with an endogenous residential amenity
that reflects the high-education share of the neighborhood population. Warnes (2024) extends this
by adding dynamics. Despite the explanatory success of these approaches, there is still a sense in
which these endogenous residential amenities may stand in for more precise local characteristics,

29. This is not to understate the important role of commuting nor the ability of QSMs to offer new and interesting
insights about commuting. For example, Delventhal, Kwon, and Parkhomenko (2022) use a QSM framework to study
how work-from-home shocks change the within-city distribution of economic activity.
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such as characteristics of the housing stock, local consumption options, or perceived safety. An in-
triguing avenue of study is provide evidence distinguishing different microfoundations for these
amenity terms. A good example of this is Khanna et al. (2023), who use a QSM to isolate specific
amenity channels and show that improved transportation access increases economic opportunity
and reduces overall crime, despite dispersing crime to different locations.>

There has been somewhat less of a focus in studying the direct local productivity effects of

transportation (beyond agglomeration).?!

Many QSM models retain the relatively simple pro-
duction structure that comes with either an assumption of perfect competition or monopolistic
competition. Pérez, Vial, and Zarate (2022) relax that structure, instead allowing local firms to
function as oligopolies. This modeling assumption leads to a finding of pro-competitive effects of
transit expansions. In a somewhat related finding, Zarate (2023) builds a QSM with both informal
and formal employment and shows that rapid transit expansions can shift informal employment
to the formal sector. These papers highlight that nuances in the interactions between transporta-
tion and labor markets can have substantive welfare impacts, particularly in large cities where
travel costs constrain access and economic activity.

Although transportation infrastructure does not typically directly impact the efficiency of hous-
ing or real estate supply, land use statutes are often bundled with transportation or interact with
the location of transportation. Integrating analysis of transportation and housing supply is there-
fore of particular interest, especially if there are substantial complementarities between these pol-
icy levers. To this end, Anagol, Ferreira, and Rexer (2021) show that zoning changes targeted
at increasing density along transportation corridors substantially lowered housing prices and ex-
panded transit access in Sdo Paulo. Chen et al. (2024) consider transit oriented development and
finding that combining subway expansions with densification substantially increases resident wel-
fare over subway expansions alone. In a more nuanced conclusion, Hu and Wang (2025) suggest
that Beijing’s zoning underdevelops land near subways in the urban core and overdevelops land

near suburban stations.

7 Conclusion

QSMs offer an extensive paradigm to study how transportation infrastructure drives the evolution
of urban economic geography. Despite this, it is often unclear what best practices are for the use
of these models. Given that researchers often innovate on one or two model components while
taking the rest of the model (including parameters) “off the shelf”, we should work toward careful

30. Ang, Angel, and Parkhomenko (2024) report that a large combination of observed local characteristics can explain
about 45% of estimated amenity fundamentals for a simple QSM in a large US county. While this suggests that modeling
amenities as endogenous is well founded, it also a warning that amenity fundamentals reflect other variation that may,
or may not, accord with beliefs about what amenities represent.

31. Although they do not use a QSM framework, Koh, Li, and Xu (2025) show that subways facilitate local collabora-
tions for patent development, suggesting future productivity effects.
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and conscientious implementation that reflects best practices. However, as field, care should be
taken to ensure that such progress in careful implementation and measurement does not stifle
creative applications or extensions of these models.

In this review, I make a modest attempt at clarifying current practices that are consistent with
high-confidence estimates. I contrast this with other practices that may inject uncertainty in inter-
preting model results. And throughout, I try include intuition for how QSMs rationalize the data
we feed them.

The range of questions answered by QSMs, as well as the richness of the models themselves,
is likely to continue growing. Spatially explicit data sources are ever more common, and a body
of training and practice are making these models broadly accessible to researchers. We should
endeavor to ensure that these models be as transparent as possible, and validate their use critically

and carefully.
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